Polymer Encapsulation of Nuclear Waste: Alternatives to Grout

Introduction

- UKAEA Waste Immobilisation Laboratories
 - Harwell and Dounreay
- Provide wasteform development services
 - Initial small scale tests right up to full scale trials
 - Generally in support of Letter of Compliance submissions
 - Ongoing plant support
- Traditionally used cement but things are changing

Cement

- Ordinary Portland Cement (OPC) is the preferred encapulant for nuclear waste in the UK.
 - Generally mixed with additives such as Pulverised Fuel Ash (PFA) or Blast Furnace Slag (BFS)
- Advantages
 - Flexible: Formulations can be easily tailored to individual wastes if required
 - Compatible with most wastes
 - Provides a good physical barrier to radionuclide release
 - High pH provides a good chemical barrier to release
 - Can be expected to be stable for hundreds of years
 - Good radiation tolerance
 - Porosity allows for release of gases
 - Cheap and reasonably readily available

Cement

- So why not use cement for everything?
 - Porosity
 - Allows access for water and leaching of radionuclides
 - Release of undesirable gases, eg. radon
 - Some wastes are incompatible
 - Aluminum
 - Uranium
 - Magnox
 - Ion exchange resins
 - Possible future issues with consistency of supply

Alternatives

- Other possible encapsulants include
 - Other inorganic systems
 - Calcium aluminate cements
 - Magnesium phosphate cements
 - Inert binders
 - Clay LoC obtained for use at Harwell
 - Low melting point metals
 - Organic polymers

Polymers

- More options
 - Thermoplastic?
 - Polyethylene
 - Polystyrene
 - Bitumen
 - Or Thermosetting?
 - Epoxy based systems
 - Polyesters

Historical & Current Use

- UK R&D work in the '80s
 - Cement generally chosen above polymers at the time.
 - Dissolution was favoured above the use of epoxies for treatment of Magnox FED.
- Only UK large scale plant to use polymer is Trawsfynydd
 - Encapsulation of ion exchange resins
 - Uses Vinyl Ester Styrene (VES)
- Harwell Radium Wastes
 - Small scale (up to 5 litre) encapsulation with VES
 - Then encapsulated in grout in 500l drums with other solid waste
 - Better encapsulation and reduced radon emissions
- Use elsewhere in the world
 - France, Germany, USA, Canada, Japan etc.
 - Using polyesters, epoxies, polyethylene etc.
 - Often for treatment of ion exchange resins

Current Investigations

- Ion exchange resins
 - Dounreay and Harwell
- Graphite dust
 - Achieves higher loadings than cement
- GLEEP Fuel
 - Aluminium clad natural uranium
- Oils in Imbiber Beads
 - Minimise leaching
- Wet wastes?
- Windscale Piles

Windscale Piles

- Fuels and isotopes waste
 - Contains a significant quantity of metallic uranium making cement less favourable
- Various polymers investigated
 - Vinyl Ester Styrene (VES)
 - Advanced Polymer System (APS) epoxy
 - Alchemix epoxy
 - Huntsman epoxies

Properties of Polymer

- Compressive, tensile and flexural strength
 - Generally stronger than cement
 - Achieves maximum strength quickly
 - Both brittle and plastic failure possible
- Gelation and setting times
 - Largely depends on temperature
- Viscosity
 - Initial Newtonian behaviour
 - Exponential increase in viscosity as curing progresses
- Dimensional Changes
 - Polymers shrink during curing
- Leaching performance

Heat Release

- Heat release / curing exotherm
 - Isothermal conduction calorimetry
 - Scaling trials from 500g to 25kg
 - Full scale (up to 300l) trials
- Lower heat capacity and thermal conductivity than cement
 - Cement heat capacity approximately twice that of polymer
 - Cement thermal conductivity ~5x that of polymer
- High temperatures achieved at larger scale (>200°C)
 - A possible issue with large scale polymer encapsulation
 - Cracking occurs due to internal temperature gradients and variation in the degree of cure
- Lead to investigation of "low temperature" formulations

Radiation Stability

- Alpha irradiation and "tunnelling"
 - Two dose rates and a concentrated beam
- Gamma irradiation
 - 10 MGy at 3.5 kGy/h,
 - 150 kGy at 3.5 kGy/h and 34 kGy/h
- Tests performed
 - Three point bend and compressive strength
 - Infra-red spectroscopy
 - Gel fraction / solvent uptake
 - Leachate analysis
 - Gas generation
- Progressive changes in properties under irradiation
 - One polymer heavily degraded at high dose

Simulant Interactions

- Variety of simulants being investigated
 - Aluminium
 - Mild Steel
 - Graphite Powder
 - Isotope average and worst case mixtures
 - Depleted uranium
 - LiMg alloy
- Monitoring for 2 years
 - Currently just over 6 months in
- 5mm simulant pieces in 19mm polymer cubes
 - APS, Alchemix and low temperature Alchemix
 - Monitored for dimensional changes, compressive strength, and any visual observations
 - Sectioned and analysed by optical microscopy, SEM, DSC and TGA.
- Gas generation
 - 200ml polymer with equivalent simulant loading
 - Testing for oxygen, nitrogen, carbon dioxide, carbon monoxide, propane, hydrogen, methane, ethylene, ethane and acetylene.

Results to Date

- To simulate conditions in a full scale drum, some polymers were cured at 180°C
 - Surface degradation
 - Production of CO_2 , CO, CH_4 and C_2H_4
- Polymer has expanded slightly over time
 - Gains weight due to absorption of water from the atmosphere
- Isotope simulant sample show some damage over time
 - Reaction with humid storage environment to form metal hydroxides and carbonates
 - Efflorescence on base of cubes
 - Less CO₂ produced
 - Larger weight gains than other simulant cubes

Uranium Corrosion

- An important reason for using polymers
- Polymers do contain some water
 - Water content tests on components and set product (around 0.2%)
 - Some corrosion likely to occur, especially in absence of oxygen
- Hydrogen has been produced, though only in relatively small amounts
- 180°C cured samples exhibit a friable powder coating on the DU cube
 - Samples cured at 70°C are not exhibiting this
 - Corrosion appears to mostly occur in this initial high temperature phase.
 - Not on the same scale as with cement

Summary

- Polymers have many desirable features as encapsulants
 - High strength
 - Low permeability
 - Compatibility with 'difficult' wastes
 - Radiation tolerant
- Curing exotherm may be an issue for larger scale processes
 - However, full scale (up to 300 litre) trails performed by WPDP have been successful.
 - Low temperature formulations under investigation
 - Fillers?
- Some simulant effects have been observed
 - Isotope simulants
 - Corrosion of uranium at high temperature
- Overall positive at this stage
 - Work is ongoing

Acknowledgments

- Thanks to
 - John Clifford, Sellafield Ltd
 - The staff of the Liquid Effluent Treatment Plant, Harwell
- Any questions?

World leaders in decommissioning and waste management

