Novel tools for DUB inhibitor specificity profiling in cancer

Novartis April 2013

Benedikt Kessler
HWBMP/WTCHG
University of Oxford
UK
bmk@ccmp.ox.ac.uk
http://www.ccmp.ox.ac.uk/kessler-group
Group and Interests

Ubiquitin-Proteasome System

Chemical Biology & Mass Spectrometry

- MHC presentation
- Immune recognition (T-cells)
Ubiquitin System in Human Diseases

Neurodegenerative disease

Inflammation

Cancer

Bacterial and Viral Infections

Ub linkage type adds to biological complexity
DUBs in Disease (1)

Cancer Target discovery & "Learn" how to use them for disease intervention

Neurodegeneration Identification for Pathogens

<table>
<thead>
<tr>
<th>DUB enzyme</th>
<th>Biology</th>
<th>Human Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCH-L1</td>
<td>AKT – β-Catenin – NF-κB</td>
<td>Parkinson’s disease (mutation/OE)</td>
</tr>
<tr>
<td>USP6 (Tre2)</td>
<td>RTK, Wnt and HH pathways</td>
<td>B-cell malignancies, pancreas, colorectal, breast (OE)</td>
</tr>
<tr>
<td>USP8</td>
<td>26S editing</td>
<td>Oncogene</td>
</tr>
<tr>
<td>USP14</td>
<td>Wnt, NF-κB</td>
<td>Oncogene</td>
</tr>
<tr>
<td>CYLD</td>
<td>bind VHL</td>
<td>Ataxia (mouse)</td>
</tr>
<tr>
<td>VDU1, 2</td>
<td></td>
<td>Cylindromatosis (mutations)</td>
</tr>
<tr>
<td>USP2</td>
<td>Mdm2/4, FASN, NF-κB, c-Myc</td>
<td>Prostate / breast cancer (OE)</td>
</tr>
<tr>
<td>USP7 / 7S*</td>
<td>Mdm2/4, PTEN, FOXO4 (p53)</td>
<td>Diverse cancers (OE)</td>
</tr>
<tr>
<td>USP15</td>
<td>TGF-β-R1, β-Catenin, SMADS</td>
<td>Glioblastoma, breast & ovarian (OE)</td>
</tr>
<tr>
<td>Cezanne 1</td>
<td>EGRF turnover</td>
<td>Breast cancer (amplification, OE)</td>
</tr>
<tr>
<td>OTUB1</td>
<td>UBC13/RNF 168, p53, RhoA</td>
<td>DNA damage, prostate cancer</td>
</tr>
<tr>
<td>USP1/UAF1</td>
<td>Chk1 & ID1-3 (CSC)</td>
<td>Melanoma, colon, lung, osteosarcome (OE, activation)</td>
</tr>
<tr>
<td>USP9X</td>
<td>Mcl-1, β-catenin, TGF-β</td>
<td>Colorectal, breast, lung, lymphoma (OE)</td>
</tr>
<tr>
<td>USP10</td>
<td>p53, AR, autophagy</td>
<td>Melanoma (OE)</td>
</tr>
<tr>
<td>USP13</td>
<td>MITF oncogene</td>
<td>10-20% of melanomas</td>
</tr>
<tr>
<td>USP22</td>
<td>p53, MYC</td>
<td>Aggressive cancers (OE)</td>
</tr>
<tr>
<td>USP4</td>
<td>TGF-β-R1, β-Catenin</td>
<td>Breast, lung, colon hematopoietic cancers (OE)</td>
</tr>
<tr>
<td>USP17 (Dub3)</td>
<td>Cdc25A turnover – GTPases</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>USP33</td>
<td>Met signaling - apoptosis</td>
<td></td>
</tr>
</tbody>
</table>

Khoronenkova Mol.Cell. 2012
Problems, Challenges & Opportunities:

- How to discover & choose the right target(s) relevant for disease?
- Best way to manipulate these targets for effective intervention?

- Good knowledge about molecular target and pathway
- Substrate identity and function are unknown for most DUBs

- **Understand how your target functions**
 - Inhibitor development and substrate ID *in vitro*
 - Need to explore them in a cellular environment

DUBs in infection:

<table>
<thead>
<tr>
<th>DUB-like enzyme</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL36<sup>USP</sup></td>
<td>HSV</td>
</tr>
<tr>
<td>CoV PLpro</td>
<td>SARS</td>
</tr>
<tr>
<td>L protein</td>
<td>Hemorrhagic fever virus</td>
</tr>
<tr>
<td>Avp</td>
<td>Adenovirus</td>
</tr>
<tr>
<td>YopJ</td>
<td>Yersinia</td>
</tr>
<tr>
<td>ChlaDub1, ChlaDub2</td>
<td>Chlamydia</td>
</tr>
<tr>
<td>PFDub1</td>
<td>Plasmodium Falciparum</td>
</tr>
</tbody>
</table>
Know How Your DUB Works: Structural Information for Inhibitor targeting & design

Altun M, 2013

Otubain-2 catalytic centre
- Specific features of DUB cysteine proteases:
- Unusual triade
- Often in an “unproductive conformation” in apo form

OTUB2-UbBr2
yOTU1-UbBr3

OTUB2-UbBr2
vOTU-Ub

OTUB2-UbBr2
OTUB1-Ubal-UBC13-Ub

OTUB2-UbBr2
DEN1-NEDD8
<table>
<thead>
<tr>
<th>DUB Inhibitor</th>
<th>Target/Disease association/Therapeutic potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP Inhibitors</td>
<td></td>
</tr>
<tr>
<td>USP7</td>
<td>USP7: prostate cancer, non-small cell lung adenocarcinoma,</td>
</tr>
<tr>
<td>USP8</td>
<td>USP8: Sensitivity to glioblastoma</td>
</tr>
<tr>
<td>USP14</td>
<td>USP14: Neurodegeneration, ataxia</td>
</tr>
<tr>
<td>UCH Inhibitors</td>
<td></td>
</tr>
<tr>
<td>UCH-L1</td>
<td>UCH-L1: Parkinson’s disease</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>PR-619</td>
<td>Broad specificity DUB inhibitor</td>
</tr>
<tr>
<td>GRL0617</td>
<td>Plpro: SARS corona virus</td>
</tr>
</tbody>
</table>

Structures of DUB inhibitors PR-619 and P22077 and in vitro DUB inhibition profiles

Altun M et al. Chem&Biol 2011

In vitro enzyme activity EC50 [M]

PR-619

P22077

Cell death

Cell survival
Chemoproteomics
Looking at DUBs in Cells: Activity-Based Probes

Visualization
Retrieval
Specificity
Trap

125I
Biotin
Fluorescent
Group
Peptide
Non-peptidyl
Moieties
Epoxide
Vinyl Sulfone
Fluorophosphonate
Acyloxyketone

-SH + \[\text{active enzyme}\] \rightarrow \text{detected}

-SH + \[\text{inactive enzyme}\] \rightarrow \text{not detected}
HAUb-derived probes

Michael acceptors

HAUb

HAUb

HAUb

HAUb

HAUb

Alkyl halides

HAUb

HAUb

HAUb

HAUb

HAUb

HAUb

HAUb

HAUb

Biochemical Validation of DUB Inhibition in Cells

DUB inhibitors
PR-619
P22077

HA Tag
Ubiquitin

VME

Enzyme
Active site

Cells treated with DUB inhibitors for 6h

Extracts incubated with HA-Ub probes

HA-epitope
Electrophile

HA-Ub2

HA-UbVME

Altun M et al. Chem&Biol 2011
DUB Inhibitor Profiling in Cells using a Mass Spectrometry Approach

1. Cells treated with DUB inhibitors for 6h
2. Extracts incubated with HA-Ub probes
3. HA immunoprecipitation
4. Elution, precipitation and trypsin digestion
5. Relative quantitation by mass-spec
6. Tryptic Digestion
7. Beads with Antibody
8. HA-epitope
9. Electrophile
10. Small-molecule

Altun et al., BBA 2012
1. Label-Free Quantitation - UPLC-MS^E
2. Label-Free Quantitation / SILAC – UPLC-Orbitrap Velos – LC-Progenesis / MaxQuant
1. Normalisation based on Ubiquitin derived peptides
Activity-Based Proteomics for DUB Inhibitor Profiling in Cells

49 DUBs covered
Expanding to NEDD8, SUMO, etc...

(out of 71 known human Cysteine protease DUBs = 69%)

Altun M. et al.
Chem&Biol 2011
DUB Activity Versus Abundance

DUBs in HEKs

Correlation between Abundance and Labelling (activity)

+ -

Adapted from Geiger T. Mol Cell Proteomics 2012
Kessler BM. Curr. Opin. Chem. Biol. 2013

Altun. Chem & Biol. 2011
P5091 is a USP7 Selective Inhibitor

Chauhan D. et al.
Mol Cell 2012
USP7: A Therapeutic Target in Multiple Myeloma (MM)

USP7 Expression And Prognostic Relevance in MM Cells

P5091 Overcomes Bortezomib-Resistance Combination of P5091 and Lenalidomide, SAHA, or Dex Trigger Synergistic Anti-MM Activity

Chauhan D. et.al. Mol Cell 2012
Development of Fluorescent Ub probes

McGouran et al., OBC 2012

Active DUB profiles in cells

Blue: DAPI; green: lyso-tracker; red/yellow: DUBs
“Chariot” protein transfection reagent
HEK293T cells

CTRL (dye alone) HA-Ub-VA-Cy3 HA-Ub-VA-Cy5

Patent P38458GB

⇒Information about localized DUB activity & inhibition in cells

McGouran, 2012
“Branched” Ub Probes to Profile DUB Linkage Specificity

Information about DUB inhibition & Ub linkage specificity in a cellular environment
Novel di-Ubiquitin Probes Coupled by "Click" Chemistry

Joanna McGouran et al., 2013. Submitted
Purification and Characterisation of di-Ubiquitin active site probes

Joanna McGouran et al., 2013. Submitted
Challenges for future UPS/DUB drug development

- Obtaining specificity in targeting DUBs – demonstrated with selective USP7 inhibitors
- Chemoproteomics for DUB (inhibition) mechanism of action in cells – DUBs as drug targets
- USP7 inhibition has anti-tumour activity in vivo – synergistic with other drugs
- Novel di-Ub probes begin to address DUB Ub-linkage specificity in cells

Opportunities for

- Defining DUB subsets for different Ub-linkages
- DUB Ub-linkage inhibitor screening
- Deconvoluting DUB function:
 - DUB – substrate probes to capture DUB(s) for a given substrate in cells
Thank You!

Shoumo Bhattacharya
Ayman Al Haj Zen
CVD, Oxford, UK

Mikael Altun (Swe)
Holger Kramer
Lianne Willems
Selina Gaertner
Joanna McGouran
Mukram Mackeen
Roman Fischer
Rebecca Konietzny
Edward Kogan
Nicola Ternette

Ben Nicholson
Craig Leach
Tauseef Butt
Progenra Inc.,
Malvern, PA, USA

Alex Iphoefer
Lothar Jentsch
Raimo Famke
Helmholtz-Zentrum fuer Infektionsforschung
Braunschweig, Germany

Dharminder Chauhan
Kenneth Anderson
Dana Farber Cancer Institute
Boston, USA

Benedikt Kessler
HWBMP
Oxford, UK