Selection of carbon catalysts for the industrial manufacture of phosgene

Chris Mitchell
Huntsman Polyurethanes
Acknowledgements

• The teams in the Huntsman laboratories in the Netherlands and Belgium

 Willem van der Borden
 Klaas van der Velde
 Mark Smit
 Remy Scheringa

 Khalid Ahrika

• Don Jones for the preparation of the Aspen Custom Model
Introduction

• Phosgene used industrially in the manufacture of polyurethanes, polycarbonates, pharmaceuticals and agrochemicals.

• Gas phase reaction of chlorine with an excess of carbon monoxide over an activated carbon catalyst

• Highly exothermic process with peak temperatures reaching over 500°C

• Issue with catalyst lives in different plants

• Focus on the evaluation of commercially available catalysts
 - Chemviron
 - Donau Carbon
 - DuPont
 - Norit
 - Pica
Reaction Thermodynamics

\[\text{CO} + \text{Cl}_2 \rightleftharpoons \text{COCl}_2 \quad \Delta H = -109.55 \text{kJ mol}^{-1} \quad \Delta S = -136.94 \text{J mol}^{-1} \text{K}^{-1} \]

- Thermodynamics limits conversion at high temperatures
Lab Scale Catalyst Testing

NRV-x = Non Return Valve
MFC-x = Mass Flow Controller
V-x = (Three-way) valve
TR = Temperature recording
PR = Pressure recording
PI = Pressure indicator
= Nitrogen (N₂)
= Chlorine (Cl₂)
= Carbon monoxide (CO)
= Mixture Cl₂/CO
= Phosgene/CO
= Phosgene/CO/N₂
= NaOH/H₂O (10% w/w)
= Scrubber fume exhaust

To fume hood

Oxygen & moisture trap

Oven

Mixing chamber

FTIR Gas cell

Polyurethanes
• Reaction “lights off” as temperature increases

• Comparison of catalysts at low temperature/conversion
Lab Scale Catalyst Testing

Measurement of Catalyst Activity

- Wide spread of catalyst activity is observed
- Synthetic carbon DuPont IPC shows significantly lower activity
Measurement of Catalyst Effectiveness Factor

- Effectiveness factor (η) measured using string of full size catalyst particles
- Approximates to a series of CSTRs at low conversion
- Direct comparison of same mass of full size particles and crushed catalyst
- Effective diffusivities within catalyst pores calculated from measured effectiveness factors
Characterisation of plant catalyst

Mercury porosimetry

- Increase in pores between 10 and 100nm in diameter
- Burn out of pores by oxidation
 - CTC or CO₂ formation (trace O₂ levels typically 50-500ppm in Cl₂)
Catalyst Oxidative Stability

Temperature Programmed Oxidation with 2500ppm O₂

- Temperature ramped to 575°C and held for 3 hours
- Temperature stepped down at 3 hour intervals – 550, 500, 450, 400, 350°C

100ml/min He
0.25 ml/min O₂
0.1g catalyst (250-300μm)
Oxidative Stability - 2

Temperature Programmed Oxidation with 2500ppm O₂

• All samples show Arrhenius behaviour – $E_{act} \sim 120-170\text{kJmol}^{-1}$

• Norit RX3extra and Donau Supersorbon K40 show lowest oxidation rates
2-D Phosgene Reactor Model

Aspen Custom Modeler

- Re-parameterised literature kinetics - from Potter and Baron (1951)

- Incorporates catalyst effectiveness (pore diffusion)

- Two parameter heat transfer model

- Correct physical properties

- Model structure provides flexibility in terms of bed configuration
 - length, tube and particle diameters, different catalysts etc
 - counter and co-current coolant flow
 - flow mal-distribution through different tubes
Phosgene Reactor Modelling

Prediction of axial temperature profile in lab reactor

- Excellent agreement between model and lab reactor data
Phosgene Reactor Modelling

Prediction of axial and radial temperature profile in plant reactor

Industrial Phosgene Reactor (WO03/72237)

- Reactor tube diameter: 39.3mm
- Number of tubes: 1256
- Catalyst bed length: 2.7m
- Phosgene production rate: 10000 kg/hr
- CO excess (bed inlet): 4.2%
- Inlet pressure: 4 bar.a
- Coolant temperature: 60°C
- Inlet gas temperature: 50°C

- Predicted peak temperature of 547°C (545°C observed)
Conclusions

• Have developed an approach for the evaluation of catalysts for phosgene manufacture

• A 2-dimensional reactor model has been developed to predict catalyst performance in industrial scale reactors
 - improved catalysts lives

• There are several areas for improvement
 - Improved kinetic description of catalysts especially at high conversion
 - Better data for validation
 Temperature profiles and exit chlorine concentrations
Disclaimer

While the information and recommendations in this publication are, to the best of our knowledge, information and belief, accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE.

NOTHING IN THIS PUBLICATION IS TO BE CONSTRUED AS RECOMMENDING THE INFRINGEMENT OF ANY PATENT OR OTHER INTELLECTUAL PROPERTY RIGHT, AND NO LIABILITY ARISING FROM ANY SUCH INFRINGEMENT IS ASSUMED. NOTHING IN THIS PUBLICATION IS TO BE VIEWED AS A LICENCE UNDER ANY INTELLECTUAL PROPERTY RIGHT.

Huntsman Polyurethanes is an international business unit of Huntsman International LLC. Huntsman Polyurethanes trades through Huntsman affiliated companies in different countries such as Huntsman International LLC in the USA and Huntsman Holland BV in Western Europe.

Copyright © 2004 Huntsman LLC or an affiliate thereof. All rights reserved.