Potassium channel modulators for the treatment of autoimmune disorders
Autoimmune disorders

- During normal immune responses white blood cells protect the body from antigens such as bacteria, viruses, toxins, cancer cells
 - The cellular immune system attacks infected cells with CD4 (helper) and CD8 (cytotoxic) T cells
 - The humoral system responds to bacteria and viruses by instigating attack by immunoglobulins produced by B cells
- In patients with an autoimmune disorder the immune system cannot distinguish between foreign antigens and healthy tissue, resulting in destruction of tissue or abnormal growth patterns
- Many different organ or tissue types may be affected
 - Blood vessels, connective tissue, nerves, joints, muscles, skin
- More than 80 discrete autoimmune disorders have been identified
- The aggregate prevalence of AI disorders is ~5000 per 100,000
 - Incidence is higher in women than men
- Different AI disorders have different molecular phenotypes
Autoimmune phenotypes

Effector memory T cells and class switched B cells predominate

<table>
<thead>
<tr>
<th>Disease</th>
<th>Target organ</th>
<th>Autoreactive lymphocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psoriasis</td>
<td>Skin</td>
<td>CD45RO+CD45RA- CCR7- TEM cells</td>
</tr>
<tr>
<td>Grave disease</td>
<td>Thyroid</td>
<td>IgD-IgG+ memory B cells</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>Joints</td>
<td>CD28nullCD45RA-CCR7- TEM cells</td>
</tr>
<tr>
<td>Hashimoto disease</td>
<td>Thyroid</td>
<td>CD45RA- memory T cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IgD-IgG+ memory B cells</td>
</tr>
<tr>
<td>Vitiligo</td>
<td>Skin, mucous membranes</td>
<td>CD45RO+ memory T cells</td>
</tr>
<tr>
<td>Crohns disease</td>
<td>Digestive tract</td>
<td>CD45RO+CD28null memory T cells</td>
</tr>
<tr>
<td>Type I diabetes mellitus</td>
<td>Pancreas</td>
<td>CD28 costimulation-independent memory T-cells</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>CNS</td>
<td>CD28 costimulation-independent CD45RO+CD45RA-CCR7- TEM cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IgD-CD27+ class-switched memory B cells</td>
</tr>
</tbody>
</table>
Prevalence of AI disorders

- Third most common category of disease, after cancer and heart disease, affecting 4% of the population
- Global market reached $34Bn in 2010 and is expected to reach $55-77Bn by 2016 (CAGR ~10%)
- 14 drugs at or near blockbuster status (7 >$3Bn)
Leading product classes

- Large molecule therapies predominate
- *Intra venous* dosing is required for the majority
- Significant opportunity for a novel, orally bioavailable, small molecule approach
The autoimmune pipeline

Biologics still predominate
Opportunity for new targets providing small molecule therapeutics
T cell machinery overview

- Antigen presenting cell activates the T cell receptor
- PLCγ releases IP₃ which activates the IP₃ receptor to release Ca²⁺ from the ER
- T cell and B cell activation and proliferation are dependent on Ca²⁺
- Maintenance of this process depends on ion channel activity
Ion channels in T cells

- Ca2+ depletion in the ER leads to association of Orai1 and STIM1 to form the CRAC channel
- Ca2+ influx through CRAC depolarises the T cell
- K+ channels are recruited to the immune synapse and activated to induce repolarisation, maintaining the driving force for Ca2+ influx
- Elevated intracellular Ca2+ drives transcription factors such as nuclear factor of activated T cells

Selective block of K+ channels leads to membrane depolarisation, inhibits Ca2+ influx and shuts down cytokine production and immune cell proliferation
Role of ion channels in T cells

- At the level of the immune synapse, ion channels regulate local ionic concentrations, assembly of molecular aggregates that form signalling complexes and trans-synaptic signalling.

- At the level of the whole T cell, ion channels regulate membrane potential, Ca^{2+} influx, K^+ efflux and Cl^- efflux, leading to changes in gene expression, motility and cell volume.

- Expression of Ca^{2+} and K^+ channels can vary greatly following activation and differentiation, and may form a positive feedback loop sensitising T cells to produce a larger Ca^{2+} signal following repeat challenge with the same antigen.

- At the level of the whole animal, manipulating ion channel currents in T cells could provide relief from inappropriate acute T cell activation (KCa3.1, CRAC) or chronic inflammatory and autoimmune disorders (Kv1.3) – why this differentiation?
T cell maturation changes K⁺ channel levels

- During the first stage of an immune response naïve T cells develop into naïve effector T cells in the lymph nodes
- These produce cytokines, proliferate, then most die
T cell maturation changes K+ channel levels

- Some naïve effector T cells differentiate into long-lived central memory T cells
- When activated by an antigen these produce cytokines and proliferate, then most die
T cell maturation changes K⁺ channel levels

- Repeated antigen stimulation, as in autoimmune disorders and chronic infections, causes T_{CM} cells to differentiate into T_{EM} cells.
- These do not need to home to the lymph nodes for activation.

Diagram:*

- Naïve T cell: $CD4^+ CCR7^+ CD45^+$
- Naïve Effector: $CD4^+ CCR7^+ CD45^-$
- Effector memory: $CD4^+ CCR7^- CD45^-$
- Central memory: $CD4^+ CCR7^- CD45^-$

Quiescent

Activated
T cell maturation changes K\(^+\) channel levels

- These different types of T cells have different patterns of potassium channel expression
- Membrane potential in activated T\(_{EM}\) cells is dominated by Kv1.3

\[\begin{align*}
\text{Naïve T cell} & \quad \rightarrow \\
\text{Naïve Effector} & \quad \rightarrow \\
\text{Effector memory} & \quad \rightarrow \\
\text{Central memory} & \quad \rightarrow \\
\text{Quiescent} & \quad \rightarrow \\
\text{Activated} & \quad \rightarrow
\end{align*}\]
B cell maturation changes K⁺ channel levels

- A similar pattern of development and changes in potassium channel expression occurs for B cells

Kv1.3 > KCa3.1; KCa3.1 dominates
Kv1.3 < KCa3.1; KCa3.1 dominates
Kv1.3 >>> KCa3.1; Kv1.3 dominates

Quiescent Activated
Targeting ion channels for AI disorders

- Ion channel expression patterns in different T cell subsets change with activation and differentiation
- Targeting KCa3.1 or CRAC channels will suppress differentiation of naïve T cells and B cells and suppress all immune responses
 - Currently in early lead optimisation with CRAC inhibitors
- Targeting Kv1.3 channels will suppress only terminally differentiated T cells and B cells, suppressing chronic and autoimmune responses
 - Advanced lead Kv1.3 inhibitors
 - Indicated for MS, rheumatoid arthritis, psoriasis, other AI disorders
Kv1.3 as a drug target

- The functional channel is composed of 4 α subunits encoded by *KCNA3*
- Kv1.3 expression is almost entirely confined to immune cells
- Inhibited by a number of potent and selective toxins - e.g. ShK (and derivatives) & ADWX-1
- Toxin and small molecule Kv1.3 blockers have been shown to reduce T cell and B cell proliferation and cytokine production
- Substantial validation in human disease
The role of Kv1.3 in Multiple Sclerosis

CNS infiltrating T cells express high levels of Kv1.3

- MS is characterized by CNS cell infiltrates of activated T cells and macrophages
- These display an effector memory phenotype in post-mortem examination
- Kv1.3 expression is elevated in these cells
The role of Kv1.3 in Multiple Sclerosis
inhibition of Kv1.3 reduces clinical score in an EAE model

- Proliferation of rat myelin basic protein-specific T cells is inhibited by Kv1.3 blocking toxins\(^1\)
- ShK-L5 reduces the clinical score in an EAE model of MS\(^2\)
- Kv1.3 KO mice have a lower incidence & severity of EAE\(^3\)

The role of Kv1.3 in Rheumatoid Arthritis

T_{EM} cells from RA synovial fluid express high levels of Kv1.3

- Staining of synovial tissues from RA patients revealed infiltrating T cells express Kv1.3 but not CCR7, indicating a T_{EM} cell phenotype

- T cells from synovial fluid of patients with RA expressed higher levels of Kv1.3 than those from patients with osteoarthritis (OA)

1) Beeton. PNAS (2006) PMID: 17088564
The role of Kv1.3 in Rheumatoid Arthritis

inhibition of Kv1.3 reduces disease severity in a RA model

- ShK-186 (SL5) reduced the number of joints affected in a pristane-induced model of RA\(^{(1)}\)

1) Beeton. PNAS (2006) PMID: 17088564
Kv1.3 Inhibitor pharmacology

- **Toxins**
 - Charybdotoxin, margatoxin
 - Sea anemone family of toxins: ShK, ShK-L5,

- **Antibodies**
 - E314 has high affinity, is selective, and produces functional inhibition

- **Natural product small molecules and analogues**
 - Khellinones, correolides, Psora family of compounds

- **Drug like small molecules**
 - Scaffolds identified by several groups; few combine potency, selectivity and sustained oral exposure
Discovery of small molecule Kv1.3 inhibitors

- Objective is a potent, selective, orally bioavailable small molecule with a PK profile that provides sustained Kv1.3 inhibition
 - Essential to sustain T cell suppression for long periods in order to achieve a significant therapeutic effect
- Starting points identified by HTS, computational approaches, and re-profiling of a substantial internal Kv1.x dataset
- Screening using information-rich electrophysiology assays
 - Target, gene family and cardiac safety screening conducted on the same automated patch clamp platform
- Progression into T cell electrophysiology and proliferation assays, \textit{in vivo} testing in psoriasis, multiple sclerosis and rheumatoid arthritis assays
Automated patch clamp screening

- Kv1.3 QPatch assay is reliable & pharmacologically validated

- Seal and whole-cell parameters determine success rate & data quality
APC assays provide additional information

- Kv1.3 primary assay can identify different mechanisms-of-action
 - Multiple cursors to assess different types of block; enrich SAR
 - Charge transfer to measure inhibition independently of mechanism
Structural information is available

1J95 --> Kcsa Bacterial

2A79 --> Kv1.2 Rat, Open Channel, 2.90A (2005)

2R9R --> Rat, Chimeric, Kv2.1 Voltage Sensor, 2.40A (2007)
Computational models support SAR

HTVS

- Model is sufficiently defined to allow virtual screening of large real and virtual compound libraries
- Iterative *in silico* screening followed by real ‘wet’ electrophysiology rapidly refines the computational model
- Similar approach applied to Kv1.1/1.2 to identify novel hits with *in vivo* activity in a model of MS nerve damage
Current status

- Multiple series of potent small molecule Kv1.3 inhibitors
 - Potency in the low nM range
 - Pharmacophores developed and validated for Kv1.3 and other gene family members
 - Binding site hypothesis developed using homology models
- Selective molecules identified
 - Gene family selectivity
 - Cardiac selectivity (hERG, Nav1.5, Cav1.2)
- Good ADME properties
- Compounds inhibit human T_{EM} cell Kv1.3 currents and proliferation
- Compounds are active in established *in vivo* models of autoimmune disease
Lead compound overview

<table>
<thead>
<tr>
<th>Cmpd</th>
<th>IC<sub>50</sub> Kv1.3 (nM)</th>
<th>hERG</th>
<th>Nav1.5</th>
<th>Kv1.5</th>
<th>Sol (µM)</th>
<th>RLM (%)</th>
<th>DLM (%)</th>
<th>HLM (%)</th>
<th>Cmax (ng/ml)</th>
<th>T<sub>1/2</sub> (min)</th>
<th>Cl (ml/min)</th>
<th>V<sub>D</sub> (L/kg)</th>
<th>%F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>281</td>
<td>>50</td>
<td>>100</td>
<td>17</td>
<td>180</td>
<td>47</td>
<td>85</td>
<td>65</td>
<td>763</td>
<td>154</td>
<td>32</td>
<td>0.7</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>>150</td>
<td>>150</td>
<td>4</td>
<td>31</td>
<td>22</td>
<td>86</td>
<td>65</td>
<td>227</td>
<td>92</td>
<td>51</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>221</td>
<td>>50</td>
<td>>100</td>
<td>2</td>
<td>122</td>
<td>53</td>
<td>84</td>
<td>96</td>
<td>1575</td>
<td>36</td>
<td>37</td>
<td>0.8</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>>50</td>
<td>>300</td>
<td>28</td>
<td>136</td>
<td>64</td>
<td>75</td>
<td>93</td>
<td>249</td>
<td>65</td>
<td>36</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>>500</td>
<td>>2000</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Potent small molecule Kv1.3 inhibitors identified
- Most examples have good physicochemical and ADME properties
- SAR for gene family selectivity developed using electrophysiology data

![xent.png](attachment://xent.png)
Lead compound overview

Gene family selectivity

<table>
<thead>
<tr>
<th>Compd</th>
<th>IC$_{50}$ Kv1.3 (nM)</th>
<th>hERG x Fold</th>
<th>Nav1.5 x Fold</th>
<th>Kv1.5 x Fold</th>
<th>Kv1.1 x Fold</th>
<th>Kv1.2 x Fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>140</td>
<td>>200</td>
<td>>200</td>
<td>17</td>
<td>11</td>
<td>>70</td>
</tr>
<tr>
<td>7</td>
<td>99</td>
<td>>100</td>
<td>>300</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>107</td>
<td>>280</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>53</td>
<td>>550</td>
<td>>550</td>
<td>28</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>>900</td>
<td>>2000</td>
<td>>50</td>
<td>49</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>141</td>
<td>>200</td>
<td>>200</td>
<td>>70</td>
<td>>70</td>
<td>>70</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>>250</td>
<td>>1000</td>
<td>>140</td>
<td>79</td>
<td>97</td>
</tr>
<tr>
<td>13</td>
<td>62</td>
<td>>450</td>
<td>>450</td>
<td>>40</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>72</td>
<td>>410</td>
<td>>410</td>
<td>43</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>69</td>
<td>>430</td>
<td>>430</td>
<td>61</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>90</td>
<td>>330</td>
<td>>330</td>
<td>8</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>193</td>
<td>>150</td>
<td>>150</td>
<td>12</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>81</td>
<td>>350</td>
<td>>350</td>
<td>11</td>
<td>20</td>
<td>31</td>
</tr>
</tbody>
</table>

SAR for gene family selectivity developed
In vivo proof of concept
rat oxazolone-induced contact dermatitis (DTH) model

- Initial treatment with oxazolone triggers T cell activation and sensitisation
- Kv1.3 blocker (po) significantly attenuated ear swelling following second oxazolone challenge
- Similar magnitude of effect to that elicited by ShK (ip)
In vivo proof of concept
rat EAE model

- Kv1.3 blocker produced a significant, dose proportional, attenuation of clinical score in this multiple sclerosis model
In vivo proof of concept
rat collagen-induced arthritis model

- Kv1.3 blocker produced a significant attenuation of arthritic symptoms
Xention Kv1.3 programme

Summary

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TARGET</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potency</td>
<td><100nM</td>
<td>✓</td>
</tr>
<tr>
<td>Kv1.x gene family selectivity</td>
<td>>30-fold</td>
<td>✓</td>
</tr>
<tr>
<td>Cardiac Selectivity</td>
<td>>150-fold (hERG, Na\textsubscript{v}1.5, Ca\textsubscript{v}1.2)</td>
<td>✓</td>
</tr>
<tr>
<td>ADME</td>
<td>Drug-like</td>
<td>✓</td>
</tr>
<tr>
<td>Bioavailability</td>
<td>Orally bioavailable</td>
<td>✓</td>
</tr>
<tr>
<td>Ex Vivo Efficacy</td>
<td>Human synovial T\textsubscript{EM}-cell proliferation assay</td>
<td>✓</td>
</tr>
<tr>
<td>In Vivo Efficacy</td>
<td>Disease relevant animal models (DTH, EAE and CIA)</td>
<td>✓</td>
</tr>
</tbody>
</table>

Many thanks to the research team at Xention