

Simulating individual variability in pharmacokinetics as a risk factor for drug toxicity

lain Gardner Head of Translational DMPK Science Simcyp Limited

New Perspectives in DMPK: Informing Drug Discovery, Royal Society of Chemistry, London 11 February 2014

Outline of the presentation

- Integrating population variability into PK simulations
 creation of virtual populations
- Sources of inter-individual variability in Pharmacokinetics
 - Drug Clearance
- Using virtual populations to predict risk factors for drug toxicity
 - Cardiac Safety

The Challenge of Population Variability

Cross Section of Patients in the Royal Hallamshire Hospital

Prediction of human PK (PD) in virtual individuals

Simcyp approach

Combine in vitro-in vivo extrapolation (IVIVE) and PBPK approaches in virtual individuals to predict drug concentration and effect

Identifying relevant <u>DISTRIBUTION</u> of values for demographical, biological, physiological and genetic parameters in target population & the <u>COVARIATIONS</u> between the parameters in target POPULATION

Separating Systems & Drug Information

Separating Systems & Drug Information

Building virtual populations

CERTARA

Demographic Features of Healthy and Disease Populations

Defined by real data

Age Distribution in Target Population

CLEARANCE: In Vitro – In Vivo Extrapolation

Scaling Factors in Human IVIVE

Sources of Variability: MPPGL and Donor Age

CYP Abundance Variability

Different Individuals

PLUS

-Age (Ontogeny) - Environment (Ethnicity) - Sex / Co-medications

CERTARA

PREDICTION OF CLEARANCE (Oral)

Drug Distribution

CERTARA

Example: Midazolam pharmacokinetics (simulations in 10 trials of 10 individuals)

Can describe Midazolam Pharmacokinetics using in vitro metabolism data together with systems physiology data

24

Midazolam Tissue concentrations (mean and 5 and 95 percentiles)

Concentrations in the tissues can also be linked to Pharmacodynamic or Toxicological effects CERTARA

Cardiotoxicity

- Cardiac side effects major cause of drug withdrawal (regardless of the development level – from pre-clinical up to the post-approval)
 - E.g. Torsade de points and terfenadine
- Various mechanisms and effects involved
 - pro-arrhythmia, cardiac cell toxicity
- Drug interactions important element causing serious adverse events
 - E.g. astemizole (CYP related)
- PK variability important for safety assessment
 - E.g. tolterodine (CYP 2D6 mediated metabolism genetic variability)

- Effects of new compounds on IKR/Herg extensively screened for in drug discovery/development
 - QSAR models
 - IKR binding
 - HERG inhibition
 - Purkinje fiber studies
- Cardiac safety also often investigated in vivo
 - Pre-clinical studies
 - Thorough QT study in humans (~\$100000)
- Can cardiotoxicity also be assessed using mechanistic in silico models?

Links to PD: Assessment of Proarrhythmic Potency

Virtual population generator for human cardiomyocytes parameters: in silico drug cardiotoxicity assessment

Toxicology Mechanisms and Methods, 2012

Sebastian Polak¹, Kamil Fijorek², Anna Glinka¹, Barbara Wisniowska¹, and Aleksander Mendyk³

Structure of left ventricular cell model

- molecular structure —> QTc prolongation/TdP
 - mechanistic/physiological

O'Hara and Rudy PLoS computational Biology 7, 2011 Ten Tusscher et al. AmJPhys-HeartPhys 286, 2004

Variability matters

Clinical evidence •

Group	Parameter	Influence on ECG	Reference
Demography	age	↑ age - ↑ QT/QTc	Pham 2002
	gender	Females have longer QT/QTc as compared to males.	James 2007
Anatomy/ physiology	plasma ions concentration (K ⁺ , Ca ²⁺)	↑ K ⁺ - \downarrow QT/QTc ↑ Ca ²⁺ - \downarrow QT/QTc	Etheridge 2003 Covis 2002
	cardiomyocyte size (volume, area)	↑ size - ↑ QT/QTc	Pacifico 2003
	heart wall thickness	↑ thickness - ↑ QT/QTc	Jouven 2002
	cells heterogeneity across heart wall	M cells presence influence the T wave and ECG in general.	Antzelevitch 2010
	heart rate	↑ RR - ↑ QT	Harris 2003 Malik 2002
	sex hormones	↑ testosterone - ↓ QT/QTc ↑ progesterone - ↓ QT/QTc	Pham 2002 Sedlak 2012
Genetics	common polymorphisms (ion channels)	Usually slight modification of ECG, may act as a genetic modifier (with different mutation both protective effect and QTc prolongation were observed).	Crotti 2005
	mutations (ion channels)	↑ QT/QTc	Etheridge 2003 McPate 2005
ERTARA	© Cop	yright 2014 Certara, L.P. All rights reserved.	Polak 2013 DDT acce

Building virtual populations – cardiac safety assessment

[©] Copyright 2014 Certara, L.P. All rights reserved.

Example 1: Dolasetron – formulation dependent effect

Example 1: Dolasetron – Simcyp PK prediction

Example 1: Dolasetron – Simcyp PK prediction

CERTARA

26

Example 1: Dolasetron – CSS PD effect prediction

Example 2 – Ranolazine: IVIVE at the population level

Ranolazine

CERTAR

- I_{Kr} inhibitor (in vitro)
- multiple other ionic currents inhibition (in vitro)
- pharmacologically/electrically active metabolites
- clinically large variability

Reasonable description of the plasma concentrations after multiple dosing

lonic current	Ranolazine [IC ₅₀]/n	Source	CVT-2738 [IC ₅₀]	Source
I _{Kr}	12/1	Measured	1.19	QSAR predicted
I _{Ks}	1900/1	Measured	-	
I _{Ca}	311/1	Measured	26.38	QSAR predicted
I _{Na peak}	428/1.63	Measured	-	-
I _{Na late}	6.86/0.71	Measured		

PRO-ARRHYTHMIC POTENCY - IVIVE at the population level - RESULTS

Fig 4. Change in QTc from time-matched baseline values versus ranolazine plasma concentration in healthy control subjects. Linear regression with 95% CI was as follows: $\Delta QTc = 0.82 + 8 \times 10^{-5} \times \text{Ranolazine concentration}$ ($R^2 < 0.001$, P = 0.97 for slope [95% CI, -0.004 to 0.004]).

Summary

- Using extrapolated *in vitro* data coupled with PBPK models it is possible to simulate the pharmacokinetics of many drugs
- By incorporating known physiological co-variates it is possible to make simulations in virtual populations rather than an "average" individual
- Concentrations of drugs in tissue compartments of the PBPK model can be linked to mechanistic models to predict side effects/toxicity
- Physiological variability can also be included within the toxicity models
- Acknowledgements
 - Sebastian Polak, Amin Rostami

