

THE SCIENCE of POSSIBILITY

John Pollard Ph.D

Discovery and characterisation of potent and selective inhibitors of ATR kinase as anti-cancer agents

Damage to our DNA is relentless

Up to 1 million damage events per cell per day

Damage to our DNA is relentless

Up to 1 million damage events per cell per day

Many standard-of-care anti-cancer drugs work by inducing DNA damage
BUT don't work well because the damage gets repaired

Complex surveillance and repair network in place

Blocking DNA repair processes will increase toxicity of DNA damage – challenge is to make this specific for cancer cells

Defective DNA damage repair can improve responses to therapy

NSCLC patients stratified on the basis of ERCC1 status¹

- Testicular cancer has a high response rate to platinum based therapy (>90% cure)²
 - Attributed to defects in repair including ERCC1

¹Modified from New Eng. J.Med. (2006) 355, 983

²PNAS (2002) 99, 4592

Complex surveillance and repair network in place

Unperturbed replication fork

Unperturbed replication fork

Unresolved damage persists to S-phase

Replication fork encounters damage lesion

Replication fork stalls – *Replication stress* Uncoupled single stranded DNA is exposed

ATR kinase is recruited to stalled fork Arrests replication, controls origin firing and directs repair

Without ATR stalled replication fork collapses Forms a double strand break

Extensive overlap between replication stress and DSB repair pathways DNA damage response (DDR)

Direct DSB

Intrinsic reactive oxygen species IR, topoisomerase inhibitors

Replication stress

Intrinsic replication errors Unresolved DNA damage (from treatment with any DNA damaging agents)

Modified from Jackson SP, Bartek J. Nature. 2009;461(1071):1071-1078. DOI: 10.1038/nature08467.

Many cancer cells appear to be reliant on ATR

- Frequent defects in overlapping repair pathways
 - p53, MRN, ATM
- High background replicative stress
 - Defects in G1 checkpoint, expression of oncogenes such as kRas, hypoxia

Discovery of ATR inhibitors

- High throughput screen of in-house library of kinase focused compounds
 - Biochemistry kinase screen using recombinant ATR

- ATP competitive mechanism of action
- Moderate ATR potency
 - Ki 0.31µM
- Encouraging selectivity
 - Ki ATM >4 μ M
 - Ki DNA-PK >4µM
- Poor cell activity
 - ATR biomarker $IC_{50} > 2.5 \mu M$

HTS hit modeled in the ATP binding site

Homology model for ATR based on PI3K crystal structures Glu2380 Tyr2365 Val2378 Lys2327 3:01 Asp2494 Trp2379

J. Med. Chem. (2011) 54, 2320

Opportunity to make beneficial interactions from the 5-phenyl group

π -stack interaction with Trp2379

Polar interaction with Ser2305 from the ortho-position

Compd				
Compu	5 K	ATR	ATM	DNAPK
<u>1</u>	$-C_6H_5$	0.31	>4	>4
<u>5</u>	C_6H_4 2 CN	0.012	0.32	0.72

- ATM and DNA-PK have a similarly positioned polar residue
- Small meta substituents don't improve potency or selectivity

0.28

 C_6H_4 3 Me

Interaction with ATR specific Gly2385 from out of plane para-substituents

Compde	D	Enzyme inhibition K_i (μ M)		
Compus	ĸ	ATR	ATM	DNAPK

Torsion Angle (degrees)

J. Med. Chem. (2011) 54, 2320

Alternatives to the anilide are tolerated but compromise selectivity

• Amide functions primarily to position the aromatic group under the P-loop

0.06

1.2

0.012

29

VE-821 a powerful tool to probe target biology

Enzyme	Κi (μΜ)
ATR	0.013
ATM	16
DNA-PK	2.2
mTOR	>1
ΡΙ3Κγ	3.9

 >100-fold selectivity against 50 kinases

IF: P-H2AX (S139)

IC₅₀ 0.8µM

Nat. Chem. Biol. (2011) 7, 428

ATR inhibition increases cytotoxicity of cisplatin

HCT116 cancer cells, MTS assay, 96h

Nat. Chem. Biol. (2011) 7, 428

Phenotype is through inhibition of ATR

scrambled siATR

ATR

ATR inhibition enhances DNA damage

Cancer cells treated for 17h with cisplatin and ATRi

Inhibition of ATR leads to S-phase checkpoint override, hyperdiploidy and elevated H2AX

24 h

Hct116 cells treated with VE-821 / cisplatin for 24h. DNA content stained with PI and H2AX for phosphorylation at Ser139

ATR inhibition potentiates multiple classes of DNA damaging drug

HCT116 cancer cells, MTS assay, 96h

Nat. Chem. Biol. (2011) 7, 428

ATR inhibition potentiates IR

 MiaPaCa cancer cells treated with IR ± VE-821 in normoxic conditions (clonogenic assay)

Studies run at the Gray Institute Oxford University *Br J Cancer.* (2012) **10**, 291

and reverses hypoxia radiation resistance

MiaPaCa cancer cells treated with IR ± VE-821 in normoxic or hypoxic conditions (clonogenic assay)

Studies run at the Gray Institute Oxford University *Br J Cancer.* (2012) **10**, 291

Differential response between cancer and noncancer cells

 Combination of VE-821 and cisplatin, volume under the synergy surface at 96h (95% confidence interval)

Nat. Chem. Biol. (2011) 7, 428

Differential response between cancer and noncancer cells

- Enhanced cytotoxicity in cancer cells but only cytostasis in non-cancer cells
 - Combination of VE-821 and cisplatin

Nat. Chem. Biol. (2011) 7, 428

Enhanced growth arrest in non-cancer cells is reversible

ATR inhibition is associated with a compensatory DDR in non-cancer cells

HFL1 normal fibroblasts 10μM VE-821, 100μM Cisplatin

Synthetic lethality with ATM pathway

From tool molecule to lead candidate

- Optimisation to improve potency and drug-like properties
 - Optimised interactions with the P-loop

VE-822 modeled in ATP binding site

VE-822 markedly improves tumor responses to cisplatin in PDX NSCLC model

Statistical synergy observed in 5/9 PDX NSCLC tumors

Efficacy correlates with biomarker responses

- Mice treated with single dose of VE-822 + cisplatin and tumors assessed for:
 - Inhibition of ATR by P-Chk1 at an early time point
 - Accumulation of DNA-damage by P-H2AX at late time point

¹⁸FLT-PET a potential early marker for response

• Mice treated with single dose of VE-822 and cisplatin

VE-822 markedly improves responses to IR

MiaPaCa-2 cell line IR dosed at 6Gy once on day 1 VE-822 dosed orally at 60mg/kg on days -1 through 3 or 5

Studies run at the Gray Institute Oxford University *Cell Death Dis.* (2012 Dec)

Combination well tolerated with no significant body weight loss

VE-822 does not enhance non-cancer cell tox

- Mice treated with single IR dose (6Gy) \pm 3 doses of VE-822 (PO 60mg/kg Q2D)
 - IR beam directed through the gut
 - Animals assessed on day 5
 - Combination showed beneficial efficacy

No enhanced apoptosis

No added effect on villi length

Studies run at the Gray Institute Oxford University *Cell Death Dis.* (2012 Dec)

Summary

- ATR is a key mediator for the cellular response to replication stress
 - Induced by many cancer drugs and IR
- Many cancers appear to be addicted to ATR for survival
 - Defects in alternative repair pathways
 - Expression of replication stress inducing oncogenes
 - Hypoxia
- Med-chem program led to identification of VE-822, the lead candidate
 - Potentiates the anti-tumor activity of many DNA damaging drugs and IR in mouse models of cancer at well tolerated doses
 - Normal cells tolerate inhibition of ATR with just a transient growth arrest
 - Loss of function of the compensatory ATM-p53 pathway is an important contributor to cell sensitivity

Acknowledgements

- Project leader
 - John Pollard
- Project management
 - Nathan Coates
 - Janet Fernihough
- Research management
 - Julian Golec
 - Peter Charlton
- Biochemistry
 - Joanna Long
 - Paul Wang
- Cell Biology
 - Philip Reaper
 - Matthew Griffiths
 - Adele Peek
 - Amy Hall
 - Brenda Eustace
 - Sean Milton
 - Cheryl Murphy

- Biomarkers
 - Yong Gu
 - Matt Harding
 - Gereon Lauer
 - Chris DeFranco
 - Marina Penney
 - Darin Takemoto
- Pharmacology
 - Chris Barnes
 - Scott Gladwell
 - Brinley Furey
 - Hakim Djeha
 - Stuart Hughes
 - Yuxin Wang
 - Howard Li
 - Dave Newsome
 - Diane Boucher
 - Mark Wood
- Imaging
 - -Crystal Tolman -Mac Johnson

- Chemistry
 - Jean-Damien Charrier
 - Juan-Miguel Jimenez
 - Steve Durrant
 - David Kay
 - Ronald Knegtel
 - Somhairle MacCormick
 - Michael Mortimore
 - Michael O Donnell
 - Joanne Pinder
 - Alistair Rutherford
 - Pierre Storck
 - Anisa Virani
 - Stephen Young
- DMPK
 - Linda Lawes
 - Peter Littlewood
 - Jeff Moore
 - Tanya Hay
- Gray Inst Oxford University
 - Gillies McKenna
 - Ester Hammond
 - Thomas Brunner

Differences in biological profile between ATR and Chk inhibition

- Panel of lung lines treated with combinations of DDRi and varied DNA-damaging drugs for 96h (viability assessed by MTS)
- Data shows as maximum shifts in IC₅₀ value for the DNA damaging drug on addition of DDRi

Cancer Res. (2013) 73, LB299

Potential as a monotherapy in certain populations

- Tumors with high replicative stress
 - E.g. oncogenic stress, hypoxia, DNA-repair defects
- Tumors with defects in compensatory DDR pathways

Nat. Chem. Biol. (2011) 7, 428

J. Clin. Inv. (2012) 122, 241

Br. J. Cancer (2012) 107, 291

Further improvements by optimising the sulfone

