REAL-TIME PCR BASED FOOD PATHOGEN DETECTION ON A CENTRIFUGAL MICROFLUIDIC FOIL DISK INCLUDING POSITIVE- AND NO-TEMPLATE-CONTROLS

Oliver Strohmeier1,*, Nico Marquart1, Daniel Mark2, Günter Roth1,2,3, Roland Zengerle1,2,3 and Felix von Stetten1,2

1 Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, GERMANY
2 HSG-IMIT, Wilhelm-Schickard Straße 10, 78052 Villingen-Schwenningen, GERMANY
3 BIOSS - Centre for Biological Signalling Studies, University of Freiburg, GERMANY

ABSTRACT
We designed and evaluated a novel microfluidic structure for the real-time PCR based detection of six common food pathogens on a centrifugal microfluidic foil disk, including onboard positive- and no-template-controls for each of the targets. The microfluidic design enables for geometric multiplexed PCR in a standard centrifugal real-time PCR thermocycler. The limit of detection was 0.1 pg target DNA what corresponds to 17-56 DNA copies per PCR reaction.

KEYWORDS: Lab-on-a-Chip, Centrifugal microfluidics, PCR on a chip, Food pathogen testing

INTRODUCTION
When performing nucleic acid based testing, it is mandatory to exclude false negative and false positive results. Whereas in standard laboratory diagnostics, the integration of positive- (PTC) and no-template controls (NTC) is common practice, up to date, lab-on-a-chip demonstrators usually miss such controls. Hence this work is dedicated to the design and evaluation of integrated control systems for lab-on-a-chip based real-time PCR assays demonstrated by the nucleic acid based detection of six common food pathogens. While PTC’s usually serve as inhibition control and validate the functionality of set-up and reagents (false negatives), NTC’s are conducted to scan for unwanted DNA contaminations (false positives).

MATERIALS AND METHODS
A schematic of the developed microfluidic structure is depicted in Fig. 1. Foil disks (COP ZF 14 foil, Zeon chemicals, thickness 188 μm, diameter 130 mm) were manufactured by a softlithographic replication process [1]. To enhance priming, capillary siphons were coated with 5 μL of a hydrophilic agent (Vistex 111-50, Filmspecialities Inc.) dissolved in isopropanol (conc. 2% v/v). Hydrophobic valves were coated with 0.25 μL of an amorphous fluoropolymer (Teflon AF 1600, DuPont) dissolved in a fully fluorinated liquid (Fluorinert FC77, 3M) (conc. 0.5% w/w). One set of specific primers (10 μM, 0.3 μL each) and TaqMan probe (10 μM, 0.2 μL) for PCR was stored in each detection- and positive-control cavity by airdrying. Additionally, the cavities for positive controls were loaded with 0.1 pg and 1 pg of the corresponding pathogen DNA respectively, while the no-template control cavity was loaded with primers and probes for all target organisms but no DNA. After microfluidic processing, the disk was placed in a commercial real-time PCR thermocycler (Rotorgene 2000, formerly Corbett Research now Qiagen) for amplification and readout (Fig. 2) [1].

Fig 1: Fluidic design of the foil disk. Amplification / detection takes place in fluidically separated cavities: target detection (Det 1 – 7), positive control (PTC 1 – 6), no-template control NTC. Red circles mark hydrophobic valves.

Fig 2: Microfluidic foil disk for food pathogen detection placed in the real-time PCR thermocycler (Rotorgene 2000, formerly Corbett Research; now Qiagen).
EXPERIMENTAL

At the beginning, the disk is mounted onto a centrifugal test set-up and 100 μL of elution buffer (DI-water) and 100 μL of PCR buffer (Light Cycler 480 Probes Master, Roche Applied Sciences) are pipetted into the corresponding inlets. The disk is then accelerated to a rotational frequency of 8 Hz (5 sec.) leading to an equal distribution of elution- and PCR buffer in the respective inlet chambers (Fig. 3A). Subsequent rotation at 15 Hz (10 sec) aliquots the PCR buffer into 5 μL subvolumes. A detailed description of this microfluidic aliquoting process is given in [3]. Frequency alternation between 7 Hz and 25 Hz (10 times) then transfers the PCR buffer into the amplification cavities where the prestored, dried primers and probes are automatically rehydrated (Fig. 3B). Rotation is stopped and the capillary siphons prime with elution buffer due to capillary forces. The DNA sample is loaded into the DNA elution chamber which will in a prospective design be the elution chamber of an integrated DNA-extraction module [2]. Reacceleration to 8 Hz (100 sec.) gates the elution buffer into the DNA elution chamber (Fig. 3C). Rotation at 18 Hz (30 sec) splits the elution buffer into 5 μL volumes that are then transferred into the PCR cavities during frequency alternation between 5 - 25 Hz (20 times) (Fig. 3D). Total fluidic processing requires about 7 minutes. Subsequently, the disk is transferred from the centrifugal test set-up into the real-time PCR instrument. Thermocycling is started with an initial hot start (95°C / 7min) followed by 50 cycles of denaturation (95°C / 15 sec.), annealing (60°C / 20 sec.) and extension (72°C / 30 sec.).

RESULTS AND DISCUSSION

On disk amplification was successfully demonstrated for 1 pg and 0.1 pg DNA per PCR reaction corresponding to 170 - 560 DNA copies (Fig. 4) and 17 – 56 copies (Fig. 5) respectively. In detail: Campylobacter jejuni (560 copies and 56 copies), Citrobacter freundii (180 cop. and 18 cop.), enterohemorrhagic Escherichia coli “EHEC” (170 cop. and 17 cop.), Listeria monocytogenes (310 cop. and 31 cop.), Salmonella typhimurium (180 cop. and 18 cop.) and Staphylococcus aureus (320 cop. and 32 cop.) were successfully amplified and detected. Onboard no-template control could detect contaminations of 1.7 – 5.6 DNA copies after 50 cycles (except Citrobacter: limit of detection was 18 cop.) (Data not shown).
CONCLUSION AND OUTLOOK

We successfully demonstrated a centrifugal microfluidic lab-on-a-chip cartridge for the sensitive real-time PCR based detection of six common food pathogens using a standard laboratory real-time thermocycler. Artificial DNA contaminations could successfully be detected by onboard no-template controls while additional positive controls ensured amplification and detection functionality of each PCR system. The microfluidic chambers are arranged in a way that a connection to an upstream DNA extraction module (published in [2]) might be possible, paving the way for complete sample-to-answer analysis on a chip. Integrated prestorage of liquid reagents [4, 5] would further facilitate the operation.

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support by the federal state of Baden-Württemberg (Baden-Württemberg Stiftung MST II 17).

REFERENCES


CONTACT

*O. Strohmeier; Phone: +49 761 / 203-7345; Mail: oliver.strohmeier@imtek.de