
SINGLE-LAYER MICROFLUIDIC NETWORK-BASED 

COMBINATORIAL DILUTION 

FOR A STANDARD SIMPLEX-LATTICE COMBINATORIAL DESIGN 
Kangsun Lee

1
, Choong Kim

2
, Byungwook Ahn

1
, Hun Lee

1
, Rajagopal Panchapakesan

1
 

 Linfeng Xu
1
, Jing Xu

1
, Ji Yoon Kang

2
 and Kwang W. Oh

1*
 

1
SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical Engineering, 

University at Buffalo, The State University of New York (SUNY at Buffalo), Buffalo, New York 14260, USA 
2
Nano-Bio Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea 

 

ABSTRACT 

In this paper, we presented a straightforward strategy to generate 15 combinations with 3 samples, using single-layer 

microfluidic network. First, we investigated the performance of the single-layer based design by computational simulation 

(CFD-ACE
+
). The simulated output concentrations were extremely close to the expected values within absolute error < 1%. 

Based on the simulated design, a PDMS device was fabricated by soft-lithography and tested with fluorescent dye (sodium 

salt). The combinatorial mixing results for 15 combinations showed good performance with absolute error less than 4%. In 

addition, we have also conceptually presented two liquid handing methods (bottom-up and top-down) for high-throughput 

screening and assay.   
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INTRODUCTION 

Combinatorial chemistry is one of the promising technologies to optimize a specific range of mixture effect for several 

kinds of samples. Recently, some groups have nicely demonstrated their combinatorial dilution devices using microfluidic de-

vice [1, 2]. However, much highly-controlled sample dilution are still required to achieve better optimization of the samples. 

Previously, we demonstrated a two-layer combinatorial dilution device integrated with a flow-specific initial concentration 

controller, covering only 7 combinations with 3 samples [3]. In the combinatorial mixture design of experiment (DOE), in-

creased numbers of the mixture combinations are able to make better screening and optimization. Here, we present a very 

simple method to configure and handle 15 combinations with 3 samples for a combinatorial mixture DOE, using a single-layer 

microfluidic network-based circuit.  

 

PRINCIPLE/DESIGN 

Figure 1a shows the combinatorial configuration of a standard Simplex-lattice design with a 3-sample mixture. A 

straightforward approach was used to generate such combinations using a single-layer (two dimensional microfluidic network) 

as shown in Figure 1b. Each sample was evenly and symmetrically divided into sub-channels and flowed through mixing 

channels in the 1
st
 stage. The same procedure was performed in the subsequent 2

nd
 and 3

rd
 stages. The microfluidic circuit was 

symmetrically designed with appropriate channel lengths that could control flow rates for desired volumetric mixing ratios, 

which could be easily analyzed based on a simple electrical circuit analysis (Figure 1c) [4]. In addition, the resulted combina-

torial mixtures can be collected by two liquid handling methods: a pipette-based system (bottom-up) and a spotting/dropping 
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Figure 1:  (a) Configuration of a standard Simplex-Lattice combinatorial design containing 15 combinations with a 3-

component mixture. (b) A single-layer microfluidic circuit generating the combinatorial mixture with 3 samples (sample A, 

sample B, and sample C). (c) An analogy between microfluidic circuits and electric circuits to design the proposed micro-

fluidic network based combinatorial device.  
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system (top-down) (Figure 2).   

EXPERIMENTAL 

The devices consisted of a top PDMS layer with the microfluidic circuits fabricated by soft lithography and a bottom 

PDMS layer. A master mold with patterned SU-8 2050 photoresist was used to replicate the microchannels (height: 100 μm, 

width: 200 μm). The top layer was then punched to create inlets and outlets of 2 mm diameter. Finally, an irreversible bond 

between the two PDMS layers was achieved by a surface treatment with O2 plasma.  

For a quantitative evaluation, an aqueous fluorescein sodium salt (1 μg/ml in water Sigma-Aldrich, Germany) and distilled 

water were used as samples and buffers. The solutions were injected by syringe pumps with calculated input flow rates. Fluo-

rescence images were captured with a high-resolution monochrome digital camera (Hamamatsu ORCAER, Japan) mounted to 

an Olympus MVX10 epifluorescence microscope, and all quantitative measurements of the fluorescent intensity were ob-

tained using an Olympus Wasabi imaging software package.  

 

RESULTS AND DISCUSSION 

 We investigated the performance of the proposed design by computational simulation (CFD-ACE+). The output concen-

trations from the CFD simulation were highly accurate to the theoretical values within 1% absolute error (Figure 3). Based on 

the design, a PDMS device was fabricated by soft-lithography and its performance was tested with fluorescent dye. Only one 

sample was injected with the fluorescent dye (10 μL/min) and the other samples were injected with DI water (10 μL/min). The 

experiments were alternatively repeated under the same condition for CA, CB, and CC as shown Figure 3. First, for a qualita-

tive evaluation of the device performance, fluidic behaviors in the mixing regions were observed. The results showed that the 

fluorescent solution and the DI water were evenly merged with one-to-one ratio in the mixing regions (Figure 4a). After col-

lecting the solutions of 15 combinatorial mixtures from the device, their fluorescent intensities were analyzed. The results had 
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Figure 2: (a) Schematic of the proposed microfluidic network-based combinatorial dilution device. Available methods to 

collect samples: (b) a pipette-based robot arm system and (c) a spotting (or dropping) system for high-throughput assays.   
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Figure 3 (a) CFD simulation results with the input concen-

trations of (CA, CB, CC) = (1, 0, 0), (0, 1, 0), and (0, 0, 1), re-

spectively. (b) The resulted output concentrations in each out-

put (absolute error <1%).  
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Figure 4 (a) Fluorescent experiments with the fabricated 

PDMS microfluidic network-based combinatorial device 

and the images in the mixing regions. (b) The normalized 

intensities in each output (absolute error < 4%).    
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good agreement with the theoretical values with maximum of 4% absolute error (Figure 4b). In addition, the two liquid han-

dling strategies (bottom-up for pipetting and top-down for spotting/dropping) were conceptually tried to collect the combina-

torial mixtures for potential high-throughput system (HTS) applications (Figure 5).  

 

CONCLUSION 

The single-layer microfluidic network-based combinatorial dilution, covering 15 combinations with 3 samples for the 

combinatorial mixture DOE, has been successfully tested by mathematical modeling, simulation, and fluidic experiments. We 

have also conceptually presented two liquid handing methods (bottom-up and top-down). In the future, we will study on the 

geometries of outlets for stable spotting/dropping system (e.g., mounted tips), as well as mixing structures for high-throughput 

applications (e.g., higher flow rate). Thus, we expect that the proposed device will be valuable in many areas of biological and 

material researches for high-throughput screening and optimization. 
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Figure 5: Sample handling strategies for high-throughput systems (HTS): (a) a bottom-up liquid handling method for the 

pipette-based robot arm system and (b) a top-down liquid handling method for the spotting or dropping of samples. The re-

sulted combinatorial mixtures were dropped on a hydrophobic surface using customized tips for stable drop generations.     

 

941


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

