Novel Processes for the Treatment of ILW # **Topics for today** - The challenge - Current technology - Polymeric encapsulation - Hot Isostatic pressing - Thermal treatment - Conclusions ### The ILW challenge at Sellafield | SIXEP Magnox Sludge | Magnesium salts | | |----------------------------------|---|--| | SIXEP Sand/Clino | Clinoptilolote and sand | | | Magnox Pond Sludge | Magnesium salts | | | Plutonium Contaminated Materials | General process waste from alpha plants | | | Pile Fuel Cladding Silo | Al, Magnesium, Graphite, Uranium & other | | | Future decommissioning wastes | Concrete, brickwork, plant equipment | | | Contaminated soils | Soils | | | Pond solids | Spent fuel, skips, isotope cartridges & zeolite | | | Miscellaneous orphans | Various | | | Pile Fuel storage pond waste | Spent fuel pond sludge | | | Magnox Swarf Storage Silo | Various ILW forms from sludges to solids | | # **Challenges** Silo wastes from historic reprocessing activities Plutonium contaminated wastes from current operations # **Challenges** Sludges from legacy storage facilities #### **Current Waste Treatment Processes** Encapsulation in grout is used on 4 plants at Sellafield for a variety of wastes from flocs to compacted plutonium contaminated waste # **Polymer Encapsulation** # Polymeric Encapsulation – Currently Used and In development Resins - Trawsfynydd IX resin encapsulation in VERI (Vinyl Ester Styrene) – left - Pile Fuel encapsulation trials in Epoxy below #### Site or Business area ### **Polymer Encapsulation – Other Options** - Thermoplastic encapsulant top right. - Water absorbing surfactants in polymer below right. - Silicone Rubber encapsulant in progress – below left. ### **Alternative Encapsulants** - Magnesium Phosphate - Possible alternative to OPC for the encapsulation of mild steel, aluminium and metallic uranium. - Showing promise but an appreciable amount of work still to be done - Alumino silicate Geopolymers #### **Geopolymers** "crystalline aluminosilicates partially dissolved in a concentrated alkaline medium to produce an amorphous geopolymeric gel interspersed with undissolved crystalline particles" Many variants of geopolymer available and can be tailored to suit the waste. - Under investigation for use in the UK - SIAL* licensed in Czech and Slovak Republic - Industrial application: - Sludge from NPP A-1 in inorganic and organic coolant - Sludge from NPP V-2 - Sludge and spent resins from NPP Temelin - Oil and sludge from NPP Mochovce - *SIAL registered trademark of AMEC Nuclear Slovakia s.r.o. #### **SIAL** matrix - Typical characteristics (20% waste loading) - Compressive strength 10MPa (24 hours) 15-30 MPa (28 days) - Leach resistance Li index (ANSI16.1 1986) - -9 -10 ¹³⁷Cs - -12 -14 90Sr - -14 -18 ²⁴¹Am, ²³⁹Pu - Radiation stability to 10MGy - Microbial stability and resistance - Minimum expansion of product - No free liquids - Long-term self-recovery of cracks - No heat evolution on maturing # **Consolidation using Hot Isostatic Pressing** # **Ceramics for Pu Residues – Process steps** Size Reduction Calcination Blending Granulation HIP ### **Performance - Pilot stage** Innovation through collaboration – NNL, Sheffield University and ANSTO #### **Ceramics for Pu Residues – Product Characteristics** #### **Product** - Flexible wasteform, either full ceramic or a glass-ceramic - Zirconolite (CaZrTi₂O₇) as Pu host phase, - alumino-borosilicate glass as a flexible matrix. - Pu fully immobilised (chemically bound) in ceramic phase, impurities partition to glass phase #### **Proliferation Resistance** - Normalised Pu leach rates 10⁻⁵ to 10⁻⁴ g m⁻² d⁻¹ - 2 to 3 orders of magnitude better than HLW glass #### **Ceramics** - Durable Replicates a natural rock formation still containing natural U after ~3 billion years - Wide processing window to handle variety of chemical feed stocks - Highly uniform product with homogenous distribution of plutonium - Multi stage process required #### **Thermal Treatment** #### High temperature waste immobilisation technologies | Technology | Technology Suppliers | Nuclear Track record | |----------------------|----------------------|----------------------------------| | Plasma | Retech "PACT" | Zwilag & Tsuruga | | Joule Heating | IS Inc "Geomelt" | Hanford, Maralinga etc | | Joule Heating Melter | Energy Solutions | Hanford, Sav' River, West Valley | | Plasma | Phoenix Solutions | JAERI, Japan | | Steam Reformation | "Thor" Studsvik | Erwin, TN, & Idaho USA | | Calcine - HIP | ANSTO "Synroc" | Sellafield, Idaho, Australia | | Calcination | Areva | Cap la Hague | | Plasma | Tetronics | PCM & SIXEP Research | | Plasma | PAM 200 - KAERI | Inactive LLW/PCM/ILW | | Induction Heating CC | CEA/Areva/KHNP | LILW - Ulchin Power Plant | | Plasma | EER Ltd/Radon | LILW in Russia | | Plasma | MSE TA Inc | Hazardous Chemical | | Induction Melter | Kurion | Trials for DOE (Hanford) | #### **Products - Glass, Ceramics or Mixtures** Ceramic from Magnox Sludge Surrogate - magnesium silicates and titanates Borosilicate glass incorporating Surrogates of Magnox Sludge and Plutonium Contaminated Waste # **Summary of thermal treatment** | Advantages | Disadvantages | |--|---| | Minimal pre treatment requirements Large feed envelope Destruction of reactive material The final waste form is robust, free of organic material. Product is suitable for long term storage and disposal. Volume reduction from 3 to 100 fold Minimal secondary wastes Lifetime costs can be less than encapsulation technologies | Capital cost Nuclearisation Off gas system required to minimise gaseous discharges Process controls need to be carefully designed to compensate for the feed variables Waste characterisation | #### **Conclusions** - Sellafield currently uses encapsulation and vitrification processes for a number of ILW and HLW materials - Alternative options being evaluated for difficult waste forms and with the possibility of improving the process and waste form - Alternative encapsulants such as polymers offer benefits especially for metallic wastes forms and resins - HIPping has been demonstrated to convert plutonium wastes into durable ceramics - Thermal processes have benefits of volume reduction and durability but nuclear maturity for ILW is limited