

Potent and selective, orally active GPBAR1 agonists as chemical biology probes Patrizio Mattei, F. Hoffmann-La Roche AG, Pharma Research & Early Development

Acknowledgements

Discovery Chemistry

Kenneth Atz Caterina Bissantz Anne-Sophie Cuvier Henrietta Dehmlow Patrick Di Giorgio **Olivier Gavelle** Selina Hodel Marie-Paule Imhoff Kersten Klar Michelle Kovacic Rainer Martin Patrizio Mattei Ulrike Obst Sherrie Pietranico Noemi Raschetti Flore Reggiani Hans Richter Martin Ritter Marianne Rueher Joana Salta Petra Schmitz Jitka Weber **Daniel Zimmerli**

Cardiovascular/Metabolic DTA

Andreas Christ Sabine Grüner Maria Chiara Magnone Tanja Minz Anja Osterwald Susanne Raab Wolfgang Rapp Astride Schnoebelen Sabine Sewing Urs Sprecher **Christoph Ullmer** Elisabeth Zirwes

Discovery Technologies

Thilo Enderle Martin Graf Arne Rufer

Non-clinical Safety

Rubén Alvarez Sánchez Andreas Brink Nicole Clemann Jürgen Funk Tobias Manigold Axel Pähler

Formulation

Jochem Alsenz

Process Research & Synthesis

Stephan Bachmann Manuela Baumann Fritz Bliss Christian Jenny Jacky Joerger Fritz Koch Ernst Kupfer Michel Lindemer Karina Müller Dieter Muri Kurt Schönbächler Markus Steiner

Werner Klaus

Patents

Dörte Klostermeyer

Management

Karin Conde-Knape Silvia Pomposiello Martin Stahl René Wyler

Type 2 diabetes

- Type 2 diabetes
 - a disease resulting from a combination of defective insulin secretion and defective responsiveness to insulin.
 - 285 M people (6.4% of world adult population) affected in 2010. (source: International Diabetes Federation, http://www.diabetesatlas.org)
 - a manageable chronic condition but risk of long-term complications.
- Initial therapy of type 2 diabetes starts with metformin (in addition, lifestyle changes are strongly recommended: diet and exercise)
- If sufficient glucose control is not achieved within 3 months, add one of the following to metformin (ADA/EASD consensus report: *Diabetes Care* 2012, *35*, 1364):
 - sulfonylurea (e. g., glibenclamide)
 - PPARγ agonist (pioglitazone)
 - DPP4 inhibitor (e. g., sitagliptin)
 - GLP-1 receptor agonist (e. g., liraglutide)
 - insulin

GLP-1 is a potent inducer of glucose-dependent stimulation of glucose secretion

Bile acids as incretin secretagogues

 Deoxycholic acid administered through intracolonic infusion in humans stimulates **PYY and GLP-1 release** through activation of L-cells, to extent similar to that of a normal meal (*Gut* **1993**, *34*, 1219).

- Discovery of the target, GPBAR1 (TGR5, M-BAR) independently at Takeda and Banyu (2002), leading to intracellular increase of cAMP. Bile acids are endogenous ligands:
 - deoxycholic acid $EC_{50} = 1 \mu M$
 - lithocholic acid $EC_{50} = 0.53 \ \mu M$
- Bile acids promote GLP-1 secretion through GPBAR1 (BBRC 2005, 329, 386) in STC1 enteroendocrine cell line

GPBAR1 action on L-cells and macrophages *Both anti-diabetic and anti-inflammatory effects*

Reference compounds (1) *Synthetic bile acids*

Intercept/Università di Perugia: Obeticholic acid (INT-747)

- Mixed FXR/GPBAR1 agonist.
- Phase 3 (primary biliary cirrhosis);
 Phase 2/3 (non-alcoholic steatohepatitis)

Intercept/Università di Perugia: INT-777 [6-EMCA]

- Selective GPBAR1 agonist.
- Anti-diabetic effects: *Cell Metabolism* 2009, 10, 167.
- Reduction of atherosclerosis by reducing macrophage inflammation and lipid loading: *Cell Metabolism* **2011**, *14*, 747.
- "lead candidate to advance into clinical studies" (*J. Med. Chem.* 2009, *52*, 7958).

Reference compounds (2) *Non-bile acids*

Exelixis/Bristol-Myers Squibb: XL-475

structure not disclosed

- Orally administered GPBAR1 agonist. Designed to selectively target the GPBAR1 receptors in the intestine without significant systemic exposure to enhance the therapeutic index for potential chronic administration.
- Effective in lowering blood glucose, improving glucose tolerance, improving plasma and hepatic lipid levels, and reducing hepatic steatosis.

GlaxoSmithKline: SB-050

- Compound SB-050 progressed to the clinic but was stopped due to inconsistent PD effects/large inter-individual variations (e.g. GLP-1 release) across doses.
- Not clear whether systemic exposure is required for PD effect.
- 241st ACS National Meeting & Exposition, Anaheim 2011, MEDI-335.

Today's topics

- A new class of non-bile acid derived, orally bioavailable GPBAR1 agonists
 - ⇒ Start from scratch, by way of high-throughput screening
- Characterisation of the new GPBAR1 agonists as antidiabetic agents
 - ⇒ Glucose, PYY, GLP–1

GPBAR1 – HTS

- High-throughput screening of the whole Roche library (n = 940000)
- 5147 validated hits, of these 847 at hEC₅₀ < 3 μ M
- Examples (other than bile acids, steroids):

Roche

Ligand alignment: HTS hits/synthetic bile acid

Should we consider oximes at all? *Marketed drugs*

Antibiotics

INN	cefdinir
marketed by	Astellas/Abbott + generics
peak sales (year)	ca. USD 900 M (2006)
dose, administration route	oral, 300 -600 mg/day
half life	1.7 h
clogP	-0.5
metabolism	none (renal excretion of parent)

Hormonal contraceptives

norgestimate

Johnson & Johnson + generics

n/a

Oral, 0.18 – 0.25 mg per tablet, predominantly in combination with ethynylestradiol

n/a

5.1

Complete first-pass metabolism (intestine, liver) to active metabolites norelgestromine (deacetylation), and norgestrel (deacetylation + ketone formation)

Resynthesis of the HTS hit

Profile of the oxime hits

human/mouse EC ₅₀ [nM]	45	19
mouse EC ₅₀ [nM]	2000	760
solubility [mg/L] (LYSA, pH 6.5)	<1	<1
logD (pH 7.4)	3.4	>3
aqueous stability (pH 1, 4, 6, 8, 10)	n. d.	stable
permeability (prediction)	medium/high	medium/high
Cl _{mic} [mL/min/mg protein] (h/m)	169 / 460	242 / 388
CYPs [µM] (3A4, 2D6, 2C9)	<0.2 / 3.1 / <0.2	<0.2 / 2.2 / <0.2
hERG IC ₂₀ [µM]	n.d.	5.5
CI [mL/min/kg]		77
₽ V _{ss} [L/kg]		1.6
5 F [%]		32
≥ t _{1/2} [h]		0.2 - 0.5
protein binding f _u [%] (h/m)		0.2 / 0.5

Initial SAR: Oxime, pyridine

hEC₅₀

0.045 μM

0.26 μM

>10 μM

>10 µM

hEC₅₀

>10 µM

F

N N

>10 μM

>10 µM

>10 µM

0.045 μM

Optimisation of "northern" vector

 $hEC_{50} = 0.045 \ \mu M$

Lipophilic unsubstituted 4-pyridyl derivatives 3A4/2C9 pharmacophore

hEC ₅₀	0.012 μM
CYP3A4, IC ₅₀	<0.2 µM
CYP2D6, IC ₅₀	4.3 μM
CYP2C9, IC ₅₀	<0.2 µM
logD	>4

CYP3A4 (n = 539)

CYP2C9 (n = 497)

3-Methyl-4-pyridyl is not a CYP450 pharmacophore

3-Methyl-4-pyridyl is not a CYP450 pharmacophore

hEC ₅₀	0.028 μM
CYP3A4, IC ₅₀	5 µM
CYP2D6, IC ₅₀	19 µM
CYP2C9, IC ₅₀	1.6 μM
logD	>4

CYP3A4 (n = 554)

CYP2C9 (n = 538)

Other head groups with reduced CYP interaction

Roche

Introduction of polarity at "south eastern" exit vector

Comparison of in vitro profiles

HTS hit

benzoic acid lead compound

human EC ₅₀ [nM]	19	11
mouse EC ₅₀ [nM]	760	130
FXR transactivation	inactive	inactive
off-target activity: PPARs, LXR, PXR, RXR	n.d.	inactive
solubility [mg/L] (LYSA, pH 6.5)	<1	9
logD (pH 7.4)	>3	2.7
aqueous stability (pH 1, 4, 6, 8, 10)	stable	stable
permeability (prediction)	medium/high	medium/high
Cl _{hep} [mL/min/mg protein] (h/m)	n.d.	16 / 53
CYPs [µM] (3A4, 2D6, 2C9)	<0.2 / 2.2 / <0.2	45 / >50 / 14
hERG IC ₂₀ [µM]	5.5	>10
protein binding f _u [%] (h/m)	0.2 / 0.5	0.04 / 0.2

Improved properties translate into an improved PK

OH

8

800

HTS hit benzoic acid lead compound OH N OH 100000 10000 10000 → p.o. 23 mg/kg plasma conc. (ng/mL) → p.o. 8.1 mg/kg 📥 i.v. 1.0 mg/kg - i.v. 2.2 mg/kg 1000 1000 100 100 10 10 1 1 2 0 4 6 8 0 2 4 6 Time (h) Time (h) V_{ss} [L/kg] CI c_{max} norm. CI c_{max} norm. V_{ss} t_{1/2} F t_{1/2} F [ng/mL]/[mg/kg] [mL/min/kg] [L/kg] [h] [%] [ng/mL]/[mg/kg] [mL/min/kg] [h] [%] mouse 77 1.6 0.2-0.5 32 0.5 2.5 80 65 15

plasma conc. (ng/mL)

PK/PD for benzoic acid lead compound *PYY as mechanistic readout*

C57BL6 mice

concentration vs. time

dose: 100 mg/kg p.o.

PK/PD relationship

- No indirect or delayed effect
- Plasma exposure appears to be a good surrogate for GPBAR1 action.

Oral glucose tolerance test of lead compound *Dose dependent improvement of glucose tolerance*

Roche

Second generation: Reduce logD/protein binding

	hEC₅₀ [nM]	mEC₅₀ [nM]		solubility [mg/L]			logD		f_u (h/m) [%]
in vitro:	11	130			9			2.7	0.04/0.2
	CI		Vss	t	1/2	F		C _{ma}	_{ax} norm.
mouse PK:	[mL/min/kg]		[L/kg]		[h] [%]			[ng/n	nL]/[mg/kg]
	15	15		2	2.5 80			800	

hEC ₅₀ [nM]	m	EC ₅₀ [nM]	S	olub [mg/	ility L]	logD		f _u (h/m) [%]
4		28		273			1.5	0.4/1.9
CI [mL/min/kg	g]	Vss [L/kg]		t_{1/2} [h]	F [%]		C _{ma} [ng/m	norm. nL]/[mg/kg]
5		0.4		1.7	100)		650

	OH N	 0
Ø	\prec	U
ۍ ٥	-N	

hEC ₅₀ [nM]	n	EC₅₀ [nM]	solub [mg.	ility /L]		ogD	f_u (h/m) [%]
60		450	250		250 1.3		0.4/0.4
CI [mL/min/k	al	Vss [L/ka]	t _{1/2} [h]	F [%]		C _{ma} [ng/m	norm. hL1/[ma/ka]
5	.91	0.5	0.7	87		<u> </u>	600

hEC ₅₀	n	IEC ₅₀	solubility			ogD	f _u (h/m)	
[nM]		[nM]		[mg/	′L]			[%]
26	1	300		30	300		1.7	2.1/11
CI		Vss		t _{1/2}	F		C _m	_{ax} norm.
[mL/min/k	g]	[L/kg]		[h]	[%]		[ng/n	nL]/[mg/kg]
67		3.3		2.2	29			40

Synthesis of RO5527239

RO5527239 binds specifically to GPBAR1 *Same binding site as lithocholic acid*

No meaningful off-target activity identified

- radioligand binding panel (Cerep, n = 97)
- transactivation assays:
 - FXR
 - LXRa, LXRβ
 - ΡΡΑRα, ΡΡΑRγ, ΡΡΑRδ
 - RXRa

Cellular activity of RO5527239 *GPBAR1 expressing enteroendocrine STC-1 cells*

RO5527239 in humanised **DIO (C57/BI6)** mice *GLP-1/PYY* secretion and glucose tolerance

 Higher in vivo efficacy of RO5527239 in GLP-1/PYY release translates into superior glucose tolerance.

Acute improvement in glucose tolerance in db/db mice Synergistic effects with metformin and sitagliptin

Summary

- We have identified a new class of orally available GPBAR1 agonists starting from high-throughput screening hits.
- An unsubstituted oxime group is required for this class of compounds.
- Optimised GPBAR1 agonists bind to the target in the same manner as bile acids, resulting in secretion of PYY and GLP-1.
- RO5527239, the most potent compound of this class, improves glucose tolerance in rodents and shows synergistic effects with sitagliptin and metformin.

We Innovate Healthcare