Energy, Waste & Resources – three sides of the same coin ? The Royal Society of Chemistry : Environmental Chemistry Group

Fuels, chemicals and materials from waste

Professor Paul T. Williams

Energy Research Institute University of Leeds

UNIVERSITY OF LEEDS

Contents

- Pyrolysis
 - Pyrolysis technologies
 - Commercial pyrolysis plants
- Gasification
 - Gasification technologies
 - Commercial gasification plants
- Valorization of waste
 - Higher value products from wastes

Fuels, chemicals and materials from waste

Contents

- Pyrolysis
 - Pyrolysis technologies
 - Commercial pyrolysis plants
- Gasification
 - Gasification technologies
 - o Commercial gasification plants
- Valorization of waste
 - Higher value products from

Pyrolysis: Technologies

Technology	Residence time	Heating rate	Temp (°C)	Major products
Slow pyrolysis	Hours - days	Very low	300 - 500	Charcoal
Conventional pyrolysis	5 – 30 min	Medium	400 - 600	Char, liquids, syngas
	5 – 30 min	Medium	700 - 900	Char, syngas
Fast pyrolysis	0.1 – 2 sec	High	400 - 650	Liquids
	< 1 sec	High	650 - 900	Liquids, syngas
	< 1 sec	Very high	1000 - 3000	Syngas

The terms "slow pyrolysis", "fast pyrolysis" or "flash pyrolysis" are somewhat arbitrary and have no precise definition of the times or heating rates for each process. "Fast pyrolysis" and "flash pyrolysis" sometimes are all characterized as "fast pyrolysis".

Pyrolysis reactors

Reactor Type	Heating Method	Heating Rate
Fluidised Bed	Heated recycle gas Firetubes	High Moderate
Entrained Flow	Recycled hot sand	High
Fixed Bed	Heated recycle gas	Low
Rotary Kiln	Wall heating	Low

Biomass Fast pyrolysis: Bio-oil

- > Very high heating rates and heat transfer rate to waste materials
- Carefully controlled pyrolysis temperature (e.g. 500 °C) to maximise the liquid yield
- Short hot vapour residence times Rapid removal of the pyrolysis vapours from the hot zone
- Rapid cooling of the pyrolysis vapours to generate bio-oil
- Bio-oil production up to 70wt%

Some Processes;

Dynamotive, Fluidised bed process

Ensyn entrained flow reactor

Bio-oil from fast pyrolysis

Potential substitute for fuel oil and as a feedstock for production of synthetic gasoline or diesel fuel

However the bio-oil properties;

- ➢ High acidity
- Corrosive
- Poor stability
- High content oxygenated organic compounds
- Low heating value

Bio-oil Fuel Specifications

Bio-oil fuel s	pecifications		
	No2 Fuel	Ensyn bio-oil	Union Fenosa bio-oil
Feedstock	-	Hardwood	Eucalyptus
Moisture %	0	19	23
HHV MJ/kg	45	25	21
Viscosity cSt	2.7 (40 C)	1154 (25 C)	579 (25 C)
Solids %	0.05	0.65	0.94
Carbon	86.94	59.46	58.08
Hydrogen	12.48	6.22	5.97
Nitrogen	0.02	0.06	-
Sulphur	0.3	0.016	0.1
Oxygen	0.17	34.26	35.68

Composition

Organic acids	5-10 wt%
Aldehydes and hydroxyaldehydes	5 - 20 wt%
Ketones and hydroxyketones	0-10 wt%
Phenolics	20 – 30 wt%
Water	15 – 30 wt%

Description Call Call

<section-header><section-header><table-container><image><image><image><image>

<section-header><section-header><section-header><section-header><section-header><image><image><list-item><list-item><list-item><list-item><list-item>

Fuels, chemicals and materials from waste

Contents

- Pyrolysis
 - Pyrolysis technologies
 - o **Commercial pyrolysis plants**

Gasification

- Gasification technologies
- Commercial gasification plants
- Valorization of waste
 - Higher value products from

Gasification Reactions

Gasification – The partial oxidation of waste in which organic compounds are converted to a syngas comprising CO, H_2 , CH_4 , tar and ash

Solid-Gas Reactions

$C + \frac{1}{2}O_2 \rightarrow CO$ (partial combustion)	[exothermic]
$C + O_2 \rightarrow CO_2$ (combustion)	[exothermic]
$C + 2H_2 \rightarrow CH_4$ (hydrogasification)	[exothermic]
$C + H_2O \rightarrow CO + H_2$ (water-gas)	[endothermic]
$C + CO_2 \rightarrow 2CO$ (Boudouard)	[endothermic]

Gas-Gas Reactions

 $\begin{array}{l} {\rm CO} + {\rm H_2O} \rightarrow {\rm CO_2} + {\rm H_2} \ ({\rm shift}) \\ {\rm CO} + 3{\rm H_2} \rightarrow {\rm CH_4} + {\rm H_2O} \end{array}$

[exothermic] [exothermic]

Gasification Reactor Designs

Reactor Type	Mode of contact
Fixed Bed	
Downdraft	Solids move \downarrow , Gas moves \downarrow , ie: co-current
Updraft	Solids move ↓, Gas moves ↑, ie: counter-current
Cross-draft	Solids move \downarrow , Gas moves at right angles ie: \leftarrow or \rightarrow
Fluidised Bed	
Bubbling	Relatively low gas velocity, inert solid stays in reactor
Circulating	Much higher gas velocities, inert solid is elutriated, separated and re- circulated
Moving Bed	Mechanical transport of solid, usually horizontal. Typically used for lower temperature processes, ie: pyrolysis
Variants	Multiple hearth, Horizontal moving bed, sloping hearth, screw/augur kiln
<u>Other</u>	
Entrained bed	Usually there is an inert solid, has highest gas velocity of lean phase
Rotary kiln	systems
Cyclonic	Good gas-solid contact
reactor	High particle velocities and turbulence to effect high reaction rates

Syngas

Syngas can be used to produce Fuel, Power and Heat However: , <u>tar content & fine particulates, pollutants such as</u> <u>SOx etc</u>. are challenges for the subsequent process after the gasification of waste

Combustion of the 'dirty' syngas in a conventional boiler or thermal oxidizer \rightarrow produce steam \rightarrow power (Lower Net Efficiency 10-20%)

Cleaning of the syngas to produce a 'clean' fuel gas → power via gas engines or turbines (Higher Net Efficiency 13-28%)

Tar

A dark, oily, viscous material, consisting mainly of high molecular weight hydrocarbons: Causes blockages, plugging and corrosion in downstream fuel lines, filters, engine nozzles etc

Methods to reduce/remove tar:

Primary:

High-temperature gasification Add bed materials such as dolomite Secondary:

Hot gas filters

Wet scrubbers Catalytic cracking

Some processes;

Ebara TwinRec Gasifier

- Combined gasification and melting process
- Fluidised bed and ash melting process
- 12 commercial plants in Japan
 - 3 mixed wastes and 9 for MSW
 - Capacities range from 19,000 to 165,000 tpa

Ebara TIFG, Kawaguchi, Japan, 2002, 125,000 Tpa

Nippon Steel

- Vertical shaft fixed bed updraft, slagging gasifier
 - Municipal solid waste
- Produces 'dirty' syngas combusted for steam for power generation
 - slag for recycling as construction aggregate
- 30 plants operating

Nippon Steel, Ibaraki, Japan, 1980, 135,000 Tpa

Mitsui R21 Process

- Gasification with high temperature combustion and slagging
- Municipal solid waste
- Mitsui and Takuma (Japanese licensees)
- 7 plants in total (largest 135 kTpa)

Mitsui R21, Toyohashi, Japan, 2002, 120,000 Tpa

Combined Pyrolysis-Gasification

Fuels, chemicals and materials from waste

Contents

- Pyrolysis
 - Pyrolysis technologies
 - o Commercial pyrolysis plants

Gasification

- Gasification technologies
- o Commercial gasification plants
- Valorization of waste
 - Higher value products from wastes

"VALORIZATION OF WASTE"

"Transformation of waste to energy, fuels, and other useful materials"

Valorization of Waste

Examples;

- 1. Tyres
- 2. Plastics
- 3. Composite waste

1. Waste Tyres

World 13.5 Million Tonnes/year (1000 Million Tyres/year)

Europe 2.7 Million Tonnes/year (200 Million Tyres/year)

Tyre oil composition

Peak	Compound	1 ¹ 14 1 9
1.	Cyclopentanone	Turo Oil
2.	Dimethylcyclopentanone	a Tyre Oli
3.	Ethylbenzene	5
4.	Xylene	6 13 20 22
5.	Styrene	2 7 10 14 16 18 19 21
6.	Ethylmethylbenzene	
7.	Methylstyrene	
8.	Benzonitrile	
9.	Limonene	
10.	Terpinolene	1 2 9
11.	Methylbenzonitrile	3 56 78
12.	Benzoic acid	M M
13.	Benzothizole	T. I.
14.	Caprolactama	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15.	Methylnaphthalene	2449 2441 2049 2049 2049 2049 2049
16.	Dimethylnaphthalene	
17.	Pentadecene	TC3 550
18.	Trimethylnaphthalene	
19.	Heptadecene	
20.	N-hexylbenzamide	4 F3 550
21.	Hexadecanitrile	F3 900 Multimeter
22.	Heptadecanitrile	3500 3000 2500 2000 1500 1000

Feedstock	Reactor Type	Temperature (C)	Gas ^a (wt%)	Oil/Wax (wt%)	Char (wt%)											
Plastic Mixture	Vacuum	520	6.3	91.8	1.3											
Plastic mixture	Fixed bed	700 ¹	9.6	75.1	2.9											
Plastic mixture	Fluidised bed	600	44.7	43.2	7.6											
Plastic mixture	Fixed bed	500	85.2	12.5	3.0			Gasi	Com	nosi	tion					
MSW Plastic	Fluidised bed	787	43.6	26.4	25.4			003	com	posi	cion					
					Reactor	H ₂ (wt%)	CH ₄ (wt%)	C ₂ H ₆ (wt%)	C ₂ H ₄ (wt%)	C ₃ H ₈	C ₃ H ₆	C ₄ H ₁₀	C ₄ H ₈ (wt%)	CO ₂	CO	HC
MSW Plastic	Fixed bed	430	25	HDPE	Fixed bed	0.12	1.90	2.21	6.08	1.31	4.56	0.22	0.36	-	-	-
				PE	Fluidised	0.8	23.8	6.7	20.0	0.08	5.6	-	0.6			-
				LDPE	Fixed bed	0.05	1.14	1.67	4.00	1.33	4.00	0.32	2.00			-
				LDPE	Ultra fast	-	22	-	28		18					-
Pro	duct vield			LLDPE	Fluidised	-	4.6	2.2	19.4	0.8	12.0	13.1 ¹		-	-	-
110	auce yiela			PP	Fixed bed	0.05	0.93	1.45	3.52	1.00	3.53	0.23	1.29	-	-	-
				PP	Fluidised	0.7	28.2	4.0	13.9	0.09	3.7	-	0.4	-	-	-
				PS	Fixed bed	0.04	0.53	0.08	0.26	0.02	0.05	0.00	0.06	-	-	-
				PS	Fluidised	-	0.06	-	0.04	-	-	-	-	-	-	-
				PVC	Fixed bed	0.12	0.77	0.47	0.15	0.24	0.19	0.11	0.15	-	-	52
				PET	Fixed bed	0.31	0.71	0.03	1.41	0.13	0.09	0.00	0.00	22.71	13.29	0.
				Polyester	Fluidised	0.3	3.8	0.2	-	0.05	0.1	-	-	26.9	17.4	-
				PU	Fluidised	0.7	16.1	1.8	7.2	0.2	1.3	-	0.1	1.8	34.0	-
				Mixed Plastic	Fixed bed	0.08	0.97	1.01	1.67	0.70	0.83	0.14	2.20	2.06	-	2.
							0.07	0.00	0.00	1.04	6.60	0.04	6.0.6			1.7

22

Oil Analysis: Pyrolysis of plastics

Property	PE	РР	PS	Nylon	PP 50% PE 43% Nylon 7%	Polyester Styrene copolymer
Flash point (°C)	33.6	27.8	26.1	34.8	26.0	26.0
Pour point (°C)	2.7	-39	-67	-28	-5.0	-
Water content (ppm)	0.18	0.13	0.67	2500	310	-
Ash (wt%)	0.013	0.010	0.006	0.018	0.001	0.53
Viscosity (cst 50 °C)	2.19	1.9	1.4	1.8	1.485	3.9^{3}
Density (kg/m ³)	0.858	0.792	0.960	0.926	0.799	0.83
Cetane rating	-	56.8	12.6	-	54.3	-
Carbon (wt%)	-	-	-	-	-	86.1
Hydrogen (wt%)	-	-	-	-	-	7.2
Sulphur (wt%)	0.01	0.01	0.01	0.01	0.013	0.0
Initial B.Pt (°C)	-	-	-	-	-	75
10% B.Pt (°C)	-	-	-	-	-	93
50% B.Pt (°C)	-	-	-	-	-	189
90% B.Pt. (°C)	-	-	-	-	-	354
CV (MJ/Kg)	52.3	53.4	50.4	44.4	46.3	33.6

23

3. Composite plastic waste

Energy, Waste & Resources – three sides of the same coin ? The Royal Society of Chemistry : Environmental Chemistry Group

Fuels, chemicals and materials from waste

Professor Paul T. Williams

Energy Research Institute University of Leeds

