<u>CRTh2</u>: <u>Can Residence Time Help ?</u>

RSC-SCI Symposium on GPCR2 in Medicinal Chemistry

Allschwil, Basel 15-17 September 2014

Solutions with you in mind

Rick Roberts Almirall Barcelona, Spain

Introduction

Paul Ehrlich, The Lancet (1913), <u>182</u>, 445

"A substance will not work unless it is bound"

100 years on:

"What a substance does once it's bound may depend on how long it's bound for"

The influence of Binding Kinetics

Residence time / Dissociation half-life

Partial vs Full agonism

- M3 agonists
- A_{2A} agonists

Efficacy vs substrate concentration

- Lovastatin Candasartan **Mechanism-based toxicity**
- Clozapine Celecoxib
- Haloperidol Aspirin

Duration of Action

- Ipratropium vs Aclidinium **Kinetic Selectivity**
- M3 vs M2 antagonism

Potency has little influence over these behaviours

The CRTh2 Programme

Brief introduction to CRTh2

Real name:

- Chemoattractant Receptorhomologous molecule expressed on T-Helper 2 cells
- Also known as DP2

CRTh2 activation:

- induces a reduction of intracellular cAMP and calcium mobilization.
- is involved in chemotaxis of Th2 lymphocytes, eosinophils, mast cells and basophils.
- inhibits the apoptosis of Th2 lymphocytes
- stimulates the production of IL4, IL5, and IL13, leading to:
 - eosinophil recruitment and survival
 - mucus secretion
 - airway hyper-responsiveness
 - immunoglobulin E (IgE) production
 - etc

CRTh2 and DP1 review. Nat. Rev. Drug Disc. (2007), 6, 313

CRTh2 antagonism:

- Should block pro-inflammatory PGD₂ effects on key cell types
- Potential benefit in:
 - asthma
 - allergic rhinitis
 - atopic dermatitis.

CRTh2 – A Target of interest

Our internal programme

We want to find a Once-a-day Oral Iow dose (≤ 10 mg) CRTh2 antagonist for mild-moderate asthma

- Therefore, we chose to deliberately look for slowly dissociating CRTh2 antagonists:
 - To maintain receptor occupancy beyond normal PK and extend duration of action

 to reduce the pressure of finding a carboxylic acid with desirable PK properties time

Pharmacodynamic

 to add the possibility of extra protection due to insurmountability against PGD₂ burst

Insurmountable

Assays

$GTP\gamma S vs PGD_2 binding$

GTP_γ**S vs ESC Isolated cell**

🕭 Almirall

GTP_γ**S vs ESC Human Whole Blood**

GTP_γ**S vs DP1 Receptor Selectivity**

🕭 Almirall

GTP_γ**S vs TP Receptor Selectivity**

CO₂H Ō,, $\hat{\mathbf{O}}$ ⁱ ÕH **TXA₂** 100 Thromboxane Receptor TP %Inhibition at 10 µM 90 80 ->50% TP inhibition at 10 μM TP 70 -ΗŌ 60 CO₂H 0 50 ő Ōн PGD₂ 40 -• ۲ 30 -۲ 20 -* 10 -CRTh2 0. ۲ 10 30 100 300 3000 1 3 1000 10000 **Compounds are** [³⁵S]GTPγS IC₅₀ (nM) **CRTh2 selective**

In vitro dissociation assays CRTh2

GTP_yS binding

o´b

HO

- Membranes over-expressing human CRTh2
- PGD₂ agonism produces allows [³⁵S]-GTP_YS binding, detected by radioactivity

HO

In vitro dissociation assays CRTh2

Surmountability vs Insurmountability

- Membranes over-expressing human CRTh2
- PGD₂ agonism produces allows [³⁵S]GTPγS binding, detected by radioactivity

5000-

4000-

3000

2000

1000·

1000-

800-

600-

400-

200-

0.

Readout

Λ

Readout

o´b

Ramatroban

TM-30089

(CAY-10471)

Surmountability is just a

question of time

🕭 Almirall

HO

HO

When is the insurmountable surmountable ?

In vitro dissociation assays CRTh2

Washout experiments

- Membranes pre-incubated with compound
- Antagonist effectively swamped by agonist
- Decay of inhibition followed by time
- Automated Filtration reading in 96-well format
- Readings from 2 min to 28 h

"Worst case" scenario for dissociation half-life

- No rebinding possible.
- Physiological system may be less demanding

Mechanisms of slow dissociation

On rates by mechanism – also independent of potency

On rates by mechanism

Simple fit

 $[R] + [L] \xrightarrow{k_{on}} [RL]$

 If the off rate is slow, the on rate is also slow

Sufficient PK levels needed for sufficient time to ensure receptor becomes saturated

On rates by mechanism

Induced fit

 k_1 *K*₃ [RL*] [R] + [L] [RL] k₄ k_2

Once "on", the ligand

The ligand binds quickly (Total RO%) However at this point it behaves as a classical surmountable ligand

Sufficient PK levels needed for sufficient time to ensure receptor becomes saturated

Which mechanism is it ?

- No radio-labelled ligands
- No Biacore
- Slow dissociating compounds get more potent with time

"Real" potency may be better than in vitro potency

Mechanism unknown, but induced fit suspected

How long is long? Mechanistic or Pharmacodynamic?

Necessary Receptor Occupancy for efficacy - Pharmacodynamic

Target	Class	Receptor Occupancy
GPCR	Antagonist	60-80%
	Agonist high efficacy	2-30%
	Agonist low efficacy	60-95%
Ligand-gated ion channels	Antagonist	65-95%
	Agonist	5-80%
Transporters	All	60-85%
Enzyme	Inhibitors	70-99%

Grimwood and Hartig, Pharm. Therap. 122, 281, 2009

Expanded zone: 0 – 1 half-life

DoA Scenarios for full coverage over 24h

Many CRTh2 antagonists in the clinic are twice daily

To turn a twice-daily compound into a once-daily compound, we want to add on a **Dissociation half-life of \geq 24h**

Chemical Series

Structure-Activity Relationships (SAR) Structure-Kinetic Relationships (SKR)

Are there slow-dissociating CRTh2 antagonists?

Compound	Potency Dissociation half-life*		Dissociation half-life*	Reference
Ramatroban	pA_2	36 nM	5 min	<i>Mol. Pharmacol.</i> (2006), <u>69</u> , 1441
TM-30642	pA_2	20 nM	8 min	/ /
MK-7246	K _i	2.5 nM	33 min	<i>Mol. Pharmacol.</i> (2011), <u>79</u> , 69
PGD ₂	K_{D}	11 nM	11 min	Bioorg. Med. Chem. Lett. (2011), <u>21</u> , 1036
AM432	IC ₅₀	6 nM	89 min	/ /
ADC-3680	K _i	1.6 nM	20 min	American Thoracic Society (ATS), May 17-22, 2013
QAW-039	K_{d}	1 nM	12 min	ERS 8 September 2014
QAV-680	K_d	15 nM	1 min	ERS 8 September 2014

Published residence times are all "short"

Pyrazoles

- Indole nucleus developed by Oxagen. Beginnings of slow dissociation observed
- First series of Pyrazoles gave active compounds, but no significant residence time (BMCL, 2013, 23, 3349)
- Second series of Reverse Pyrazoles gave a similar story (Eur J Med Chem, 2014, 71, 168)

SAR pretty good. No SKR advances observed in either core or tail sections

Pyrazoles series abandoned for general lack of Residence time

Pipas

- Third series of Pyrazolopyrimidinones (Pipas) gave active compounds with long residence (BMCL Accepted for publication)
- Core SAR flat. Core SKR varied

Pyrazolopyrimidinones (Pipas)

=0

Ĥ

	Oxagen	PiPa	N-Me	N-Bn	diMe	N-Me*	N-CHF ₂ *
GTP γ S IC ₅₀ (nM)	14	5	5	1	4	5	2
Dissociation t½ (h)	1.3	2.3	5.3	6.6	10	8	21

Pipas

- Tail SAR flat. Tail SKR varied
- Sulphone positioning ultimately affects SKR

R ¹	R ²	GTPγS IC ₅₀	Dissociation t ¹ / ₂
Н	Н	5 nM	2.3 h
MeO	Н	4 nM	4.2 h
Н	F	5 nM	3.3 h
MeO	F	7 nM	23 h

- Pipa series was essentially impermeable.
- Not suitable for an oral programme.
- Series abandoned due to impermeability

R	GTPγS IC ₅₀	Dissociation t ¹ / ₂
Ph	170 nM	n.d.
Ме	900 nM	n.d.
Bn	3 nM	0.9 h

Ultimately Potent but no duration

Biaryl series

- Fourth series of diverse biaryl compounds finally gave good activity and long residence time (BMCL Accepted for publication)
- Core SAR and SKR varied

1.2

1.4

1.6

4.0

2.5

2.3

Dissociation $t^{1/2}$ (h)

2

Biaryl series – Indazole core

• 6 member ring SAR flat. SKR varied

R ¹	R ²	GTPγS IC ₅₀	Dissociation t ¹ / ₂
Н	Н	19 nM	1.6 h
CI	Н	6 nM	3.2 h
F	Н	4 nM	5 h
Н	CI	16 nM	2.8 h
F	CI	15 nM	10.5 h

- Small substituents in R₁ led to moderate increased in both potency and dissociation t_{1/2}
- Substitution in R₂ led to minimal changes in binding potency

Good starting point for the search of the desired Residence time

Species differences

Percentage of identical residues among all ungapped positions between the pairs.

	Human	Guinea Pig	Rat	Mouse
Human	100%	73%	78%	80%
Guinea Pig		100%	69%	70%
Rat			100%	94%
Mouse				100%

How similar are these species ?

GTP_γ**S potencies human vs GP**

GTP human vs **GP** Residence Time

PK-PD Disconnection Simulations

For the greatest observable effect, Dissociation half-life >> PK half-life

🕭 Almirall

PK-PD disconnection model

diMe-Pyrrolopiridinone					
guinea pig pr	ofile				
Eosinophilia IC ₅₀	3 ng/m				
Dissociation t ¹ / ₂	20 h				
PK t½	0.9 h				

3 mg / kg dose

Timepoint	Plasma levels	Eosinophilia Inhibition	
1 h	1300 ng/ml	100%	
15 h	undetectable	70%	

Guinea pig PK 3 mg/kg s.c.

PK-PD Disconnection in Guinea Pig Eosinophilia

	Oxagen	BiAryl	PiPas
Eosinophilia IC ₅₀ (ng/ml)	~50	~40	~5
Gp Dissociation Half-life	1 h	15 h	20 h
Gp Pharmacokinetic Half-life	5 h	3 h	0.9 h

Long residence time translates to a PK-PD disconnection Remember: half a half-life

Molecular Determinants of Long Residence

Where is long Residence?

Selected general reports or Structure Kinetic Relationships (SKRs)

- Trend analysis of D2 antagonists. *Bioorg. Med. Chem* (2011), <u>19</u>, 2231.
- Trend analysis of Pfizer and literature data. *Med. Chem. Comm.* (2012), <u>3</u>, 449
- Review of molecular determinants. Drug Disc. Today. (2013), <u>18</u>, 667
 - Molecular size / weight ? Lipophilicity ? - Charged state ? Rigidity ? Don't know ?

Selected specific reports or Structure Kinetic Relationships (SKRs)

- Therapeutic Complement Inhibitors. J. Mol. Recognit. (2009), 22, 495
- Slow dissociation M3 antagonists. J. Med. Chem. (2011), <u>54</u>, 6888
- CCR2 antagonists. *J. Med. Chem.* (2013), <u>56</u>, 7706
- CDK8/CycC inhibitors. *PNAS* (2013), <u>110</u>, 8081.
- Adenosine A1 Receptor antagonists. J. Med. Chem. (2014), <u>57</u>, 3213

Energetic concept of Residence Time

Standard model

Clearly, Residence Time is linked to Potency

Homing in on Residence Time in the Biaryl series

	4-Azaindole	Me-4-Azaindole
GTP γ S IC ₅₀ (nM)	14	16
Dissociation t½ (h)	1.3	21

A Magic Methyl for SKR ?

Homing in on Residence Time in the Biaryl series

Long Residence Time in the Biaryls comes from an H-Bond Acceptor in ortho

Amide Rotamers

Long Residence Time in the Biaryls comes from an H-Bond Acceptor in ortho in a specific position

H-Bond Acceptors – Steric requirements

Do very subtle steric effects first determine Potency binding, then residence binding?

	Me	Fused	Pyrazole	Isoxazole	Irlazole	Amide
R3 Sterics	Large	Medium	Small	Minimum	Minimum	-
Potency	Low	Medium	High	High	High	High
Residence	-	Low	Medium	High	High	High

Can we check the H-Bond Acceptor location?

Can we achieve truly long residence?

If we understand it, we can harness it.

Once-a-day purely from Residence Time?

Lead Compound Profile

In vitro and In vivo	
human GTP γ S IC ₅₀	4 nM
ESC hWB IC ₅₀	3 nM
Dissociation t ¹ / ₂ (h)	22 h
gp GTP γ S IC ₅₀ (nM)	3 nM
Dissociation t ¹ / ₂ (h)	14 h
Eosinophilia IC50	4 nM
Eosinophilia ID_{50} at 2 h	0.020 mg/kg
PK-PD Disconnection	Yes

Safety	
hERG, Na _v 1.5, Ca _v 1.2	> 10 µM
Working heart	Clean
Cytotox	> 100 µM
GreenScreen	Clean
CYP3A4	20 µM
Major metabolite	Glucuronide
Acyl Glucuronide stability	t½ > 4 h

Physical Chemistry	
Solubility pH 1 and 7.4	> 1 mg/ml
LogD	1.3
Caco (AB/BA)	24 / 6

Pharmacokinetics	
Rat Clearance	9 ml/min/kg
Volume	0.5 L/kg
Terminal half-life	1.6 h
Bioavailability	80%
Dog Clearance	2 ml/min/kg
Volume	0.9 L/kg
Terminal half-life	8 h
Bioavailability	51%
Pred. Human Clearance	2 ml/min/kg
Pred. Volume	1.4 L/kg
Pred. Terminal half-life	biphasic
PK-PD dose simulation	2-6 mg QD

An oral, low dose (<10 mg), once-a-day CRTh2 Antagonist

<u>CRTh2</u>: <u>Can Residence Time Help ?</u>

- For a purely antagonistic effect, prolonging Receptor Occupancy prolongs PD effect
- You will only really appreciate a PK-PD disconnection if Dissociation half-life > PK terminal half-life
- For GPCR antagonism, you should count on extending the PD effect by half a half-life
- A "PK phase" of antagonism is needed to "set" the ligand in the receptor, regardless of mechanism
- We are pretty good at explaining what's behind Structure-Activity Relationships (SAR) Structure-Kinetic Relationships (SKR) are in their infancy and/or qualitative
- Residence Time can be designed
- To find Long Residence, you need to look for it

Acknowledgements

Medicinal Chemistry

Juan Antonio Alonso M^a Antonia Buil Oscar Casado Marcos Castillo Jordi Castro Paul Eastwood Cristina Esteve Manel Ferrer Pilar Forns Elena Gómez Jacob González GalChimia Sara López Marta Mir Imma Moreno Sara Sevilla Bernat Vidal Laura Vidal Pere Vilaseca

ADME

Manel de Luca Peter Eichhorn Laura Estrella Dolores Marin Juan Navarro Montse Vives Miriam Zanuy

Respiratory Therapeutic Area

Mónica Bravo Marta Calbet José Luís Gómez Encarna Jiménez Martin Lehner Isabel Pagan

Biological Reagents and Screening

Fani Alcaraz Miriam Andrés Julia Díaz Teresa Domènech Vicente García Rosa López Adela Orellana Sílvia Petit Israel Ramos Enric Villanova

Integrative Pharmacology

Clara Armengol Laia Benavent Luis Boix Elena Calama Amadeu Gavaldà Beatríz Lerga Sonia Sánchez

Computational and Structural Chemistry and Biology Sandra Almer Yolanda Carranza Sònia Espinosa Estrella Lozoya

Pathology and Toxicology

Ana Andréa Mariona Aulí Cloti Hernández Neus Prats

Development

Cesc Carrera Nieves Crespo Juan Pérez Andrés Juan Pérez García Gemma Roglan Francisco Sánchez Carme Serra

Intellectual Property Houda Meliana Eulàlia Pinyol

Management

Paul Beswick Jordi Gràcia Victor Matassa Monste Miralpeix

