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Introduction

Paul Ehrlich, The Lancet (1913), 182, 445

“A substance will not work unless it is bound”

100 years on:

“how long it’s bound determines how it works”how long it s bound determines how it works
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Energetic concept of Residence Time
Standard model

kon

[R] + [L] [RL]
on

koff boundunbound

Energy

(R·L)‡ Potency is determined by the difference 
between two rates

Off rate
koff

On rate
kon koff per second

[R] + [L]

offon off=
kon

Ki
per second

per second · per concentration

Potency = concentration

[RL]

Potency
Ki Equilibrium binding assays

measure potency but ignore kinetics

SAR
[RL]
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Energetic concept of Residence Time
Standard model

kon
Structure Kinetic Relationships (SKRs) 
h b l l i d

[R] + [L] [RL]
on

koff boundunbound

have been largely ignored: 

Residence Time
Dissociation half-life

Energy

(R·L)‡

Slow or fast kinetics
Off-rate, koff

Off rate
koff

On rate
kon

SKR
(R·L)‡

slow associating compounds that are slow dissociating

The binding kinetics are controlled by the 
transition state energy

[R] + [L]

offon slow associating compounds that are slow dissociating

fast associating compounds that are fast dissociating

[RL]

Potency
Ki

Are all equipotent

[RL]

If we can control the transition state energy, we can control the binding kinetics
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What is the transition state (R·L)‡ ?
Standard model

kon
Solvated Solvated “Home”

[R] + [L] [RL]
on

koff boundunbound

Ligand
[L]

Receptor
[R]

Home
[R] + [L]

Energy

(R·L)‡

Protein conformational
Entropy?Fleeting existence

Protein conformational 
changes? Partial 

desolvations
?“Journey”

[R] + [L]
Partial 

electrostatic 
interactions?

A physical 
process

(R·L)‡

[RL]

Potency
Ki

interactions?

[RL]
“Destination”
[RL]
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Water molecules



What is the transition state (R·L)‡ ?
Standard model

kon
Solvated Solvated “Destination”

[R] + [L] [RL]
on

koff boundunbound

Ligand
[L]

Receptor
[R]

Destination
[R] + [L]

Energy

(R·L)‡

Protein conformational
Entropy?Fleeting existence

Protein conformational 
changes? Partial 

solvations?
“Journey”

[R] + [L]
Partially 
break 

electrostatic

A physical 
process

(R·L)‡

Purely 
qualitative

[RL]

Potency
Ki

electrostatic 
interactions?

[RL]
“Home”
[RL]
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Molecular interaction points

Water molecules



Why bother to control Binding Kinetics ?
Residence time / Dissociation half-life

seconds minutes hours days

PD

le
ve

l

PD

PK

time

Surmountable InsurmountableMechanistic Pharmacodynamic

time

Potency has little influence over these behaviours

Partial vs Full agonism
 M3 agonists
 A2A agonists

Efficacy vs substrate concentration
 Lovastatin Candasartan
Mechanism-based toxicity
 Clozapine Haloperidol 

Duration of Action
 Ipratropium vs Aclidinium
Kinetic Selectivity
 M3 vs M2 antagonism
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p p
 Celecoxib Aspirin

M3 vs M2 antagonism



The CRTh2 Programme
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Brief introduction to CRTh2
Real name:

 Chemoattractant Receptor-
homologous molecule
expressed on T-Helper 2 cells

CRTh2 activation:

 Also known as DP2

 induces a reduction of intracellular cAMP
and calcium mobilization.

 is involved in chemotaxis of Th2 
lymphocytes, eosinophils, mast cells and 
basophils. CRTh2 and DP1 review. Nat. Rev. Drug Disc. (2007), 6, 313

 inhibits the apoptosis of Th2 lymphocytes

 stimulates the production of IL4, IL5, and 
IL13, leading to:

i hil i d i l

CRTh2 antagonism:

 Should block pro-inflammatory PGD2 effects on 
key cell types

 eosinophil recruitment and survival
 mucus secretion
 airway hyper-responsiveness
 immunoglobulin E (IgE) production

t

 Potential benefit in:
 asthma
 allergic rhinitis
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 etc  atopic dermatitis. 



Why Long Residence Time in CRTh2 ?
Indole acetic acids

N

OHO

N

?

F
AstraZeneca

AZD-1981
Phase II

Actelion
Setipiprant
Phase III

Oxagen-Eleventa
OC-459

Phase III

Novartis
R = CF3 QAV-039
R = H QAW-680

Merck
MK-7246
Phase I

Pulmagen-Teijin
ADC-3680
Phase II

Phase II/II

Aryl acetic acids

Indomethacin
Weak agonist Boehringer Array Roche

?

g
BI671800
Phase II

y
ARRY-502
Phase II

RG-7581
Phase IPhenoxyacetic acids

Panmira
AM461

AstraZeneca
AZD 5985 or

Amgen
AMG-853

Panmira
AM211
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AM461
Phase I

AZD-5985 or
AZD-8075
Phase I/I

AMG-853 
Phase II

AM211
Phase I



Our internal programme
We want to find a once a day, oral, low dose (≤ 10 mg) CRTh2 antagonist for mild-moderate asthma

 All antagonists are acids. 
 Acids generally have poor PK

PK Half-life vs Volume

Acid

10

n 
 (L

/k
g) Ideal 

CRTh2 
zone

Zwitterion
1

di
st

ri
bu

tio
n

Total body
water volumeHuman PK profiles of 

150 carboxylic acids

zone

0 6 12 18 24

0.1

Vo
lu

m
e 

of
 d

Total plasma
volume

150 carboxylic acids

Adapted from Obach,
Drug.Metab.Disp. 
(2008), 36, 1385

 Clinical dosing of first CRTh2 antagonists – high dose and twice daily

0 6 12 18 24
Human terminal half-life (h)

V
 Therefore, we chose to deliberately look

for slowly dissociating CRTh2 antagonists:

 To maintain receptor occupancy beyond
PD

le
ve

l

normal PK and extend duration of action
 to reduce the pressure of finding a

carboxylic acid with desirable PK properties
 to add the possibility of extra protection

PK

Insurmountable Pharmacodynamic
time

due to insurmountability against PGD2 burst
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Are there slow-dissociating CRTh2 antagonists?

TM-30089
(CAY-10471)

TM-30643TM-30642Ramatroban

Structure not 
disclosed

Merck
MK-7246

Amira
AM432

Dissociation

PGD2

Pulmagen
ADC-3680

Compound Potency Dissociation 
half-life* Reference

Ramatroban pA2 36 nM 5 min Mol. Pharmacol. (2006), 69, 1441

TM-30642 pA2 20 nM 8 min --- / / ---TM 30642 pA2 20 nM 8 min / /

TM-30643 pA2 4 nM (12.8 years) --- / / ---

TM-30089 pA2 (13.5 years) --- / / ---

MK 7246 K 2 5 nM 33 min Mol Pharmacol (2011) 79 69MK-7246 Ki 2.5 nM 33 min Mol. Pharmacol. (2011), 79, 69

PGD2 KD 11 nM 11 min Bioorg. Med. Chem. Lett. (2011), 21, 1036

AM432 IC50 6 nM 89 min --- / / ---
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ADC-3680 Ki 1.6 nM 20 min American Thoracic Society (ATS), May 17-22, 2013



In vitro dissociation assays CRTh2

Re-mountable inhibition

Surmountability vs Insurmountability
PGD2 agonist

4000

6000

ad
ou

t

Re-mountable inhibition

Readout
15 min

Readout
24 h

TM-30089

PGD2 agonist
dose-response curve

2000

4000

100 µM1 µM10 nM0 1 nM

R
ea

TM-30089

TM 30089
0 → 5 µM

100 µM1 µM10 nM0.1 nM

PGD2 Concentration

TM 30089
(CAY-10471)

Surmountability is just a question of time

15 min < TM-30089 Dissociation half-life < 24 h

Surmountability is just a question of time

100

in vitro washout Dissociation assay

“Worst case” scenario for 
dissociation half-life 

N bi di ibl

TM-30089
at 10 × IC50

40

60

80

100

nh
ib

iti
on

 %

Dissociation t1/2 ~ 80 min

 No rebinding possible.

 Physiological system may 
be less demanding

0 4 8 12 16 20 24 28

0

20

40

M
ea

n 
In
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Time (h)Then PGD2
at 10000 × EC50



Pyrazoles
 Indole nucleus developed by Oxagen. Beginnings of slow dissociation observed

 First series of Pyrazoles gave active compounds, but no significant residence time
(BMCL, 2013, 23, 3349)

 Second series of Reverse Pyrazoles gave a similar story Second series of Reverse Pyrazoles gave a similar story
(Eur J Med Chem, 2014, 71, 168)

Oxagen
Pyrazoles

Ph General 
Reverse Pyrazoles

X = CH X = N General 
Indole

GTPS IC50 (nM) 14

Dissociation t½ (h) 1.3

35 32 – 450

0.2 0.04 – 0.7

7 4 4 – 100

0.2 1.9 0.02 – 0.7

Pyrazoles series abandoned for general lack of Residence time

SAR pretty good. No SKR advances observed in either core or tail sections
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Pipas
 Third series of Pyrazolopyrimidinones (Pipas) gave active compounds with long residence

(manuscript in preparation)(manuscript in preparation)

 Core SAR flat. Core SKR varied

* * * * *

Pyrazolopyrimidinones (Pipas) 

* ** ** *** ** *

Indole

PiPa N-Me N-Bn diMe

5 5 1 4

Oxagen

GTPS IC50 (nM) 14

N-Me* N-CHF2*

5 2

2.3 5.3 6.6 10Dissociation t½ (h) 1.3 8 21
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Pipas
 Tail SAR flat. Tail SKR varied

 Sulphone positioning ultimately affects SKR

S R
O

O

N

OHO

S R

R1 R2 GTPS IC50 Dissociation t½ 

N
H

O

R GTPS IC50 Dissociation t½ 

Ortho substitution Para substitution

H H 5 nM 2.3 h

MeO H 4 nM 4.2 h

H F 5 nM 3 3 h

Ph 170 nM n.d.

Me 900 nM n.d.

B 3 M 0 9 hH F 5 nM 3.3 h

MeO F 7 nM 23 h

Bn 3 nM 0.9 h

Ultimately Potent but no duration

 Pipa series was essentially impermeable.

 Not suitable for an oral program 

16

 Still, a valuable tool to validate the PK-PD disconnection in guinea pig



PK-PD Disconnection Model

Indole Eosiniophilia PK-PDIndole Eosiniophilia PK PD

100
1 h

30

3

Pre-administration 
time

F-Indole guinea pig data 
Dissociation t½ 1.3 h < PK t½ 5.3 h 50

24 h

Dose mg/kg

3

0.3

0.3

3

 Inhibition of eosinophilia (PD) is 
purely dependant upon systemic

10 100 1000 10000 100000
0

Plasma conc (ng/ml)

0.03

purely dependant upon systemic 
levels (PK)

 No PK-PD disconnection 

( g )

Pre-administration 
time

diMe-Pipa guinea pig data
Dissociation t½ 20 h >> PK t½ 0 9 h

3

0.30.3
3

Dissociation t½ 20 h >> PK t½ 0.9 h 0.03

0.003
 Inhibition of eosinophilia (PD) outlasts 

drop in systemic levels (PK) at 17h 
after dosing

Dose mg/kg
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 PK-PD disconnection (hysteresis)



PK-PD Disconnection Simulations
PK half-life 1 h

GPCR threshold

A 1 h Dissociation half-life is barely noticeable in the PD

“PD”

y
Poor drug – short duration of action

A 12 h Dissociation half-life is definitely observable
A short acting drug keeps working long beyond its 

t tiexpectations

PK half-life 12 h

At t = 0,
[Ligand] = 10×IC50

GPCR threshold

PK half-life 12 h

“PD”

A 1 h Dissociation half-life goes completely unnoticed
Good PK means once-a-day dosing

A 12 h Dissociation half life is barely noticeable

At t = 0,
[Ligand] = 10×IC50

A 12 h Dissociation half-life is barely noticeable
A great drug is really efficacious over 24 h

Next day
Next dose

18

[Ligand]  10 IC50

For a recent article, see Drug Disc. Today (2013), 18, 697

Next dose

For the greatest observable effect, Dissociation half-life >> PK half-life



How long is long residence ?
Saturate Receptor, 

Total receptor 
population

1st half-life 2nd half-life 3rd half-lifethen washout

Ligand lost
Too dilute to rebind
Cleared from circulationCleared from circulation

Receptor Occupancy by exponential decay
100

60

80

cc
up

an
cy

Receptor Occupancy required 
for a GPCR antagonist.

An antagonist fully saturating a GPCR 
will lose robust efficacy after about 
half a Dissociation Half-life

20

40

60

ec
ep

to
r 

O
c

A twice-daily compound achieves 12 h PD

0 2 4 6 8 10
0

20

1 3
Half lives of dissociation

R
e A twice daily compound achieves 12 h PD 

coverage due to PK levels
To turn a twice-daily compound
into a once-daily compound,

19

Half-lives of dissociation

Pharmacol. Therap. (2009), 122, 281-301

we want to add on a Dissociation Half-life of ≥ 24h



Molecular Determinants of Long Residence:

Structure Kinetic Relationships (SKR)Structure Kinetic Relationships (SKR)
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Where is long Residence?
Selected lit reports or Structure Kinetic Relationships (SKRs)

 Trend analysis of D2 antagonists. Bioorg. Med. Chem (2011), 19, 2231.
 Trend analysis of Pfizer and literature data. Med. Chem. Comm. (2012), 3, 449
 Review of molecular determinants Drug Disc Today (2013) 18 667

Molecular size / weight ?
Lipophilicity ?
Charged state ?
Don’t know ?Review of molecular determinants. Drug Disc. Today. (2013), 18, 667 Don t know ?

Are Bigger compounds longer resident?

Energy

gh
t

(R·L)‡

cu
la

r  
W

ei
g

[R] + [L]
M

ol
ec[R] + [L]

[RL]

Reaction coordinate

[RL]

Nope. Not diffusion controlled

21

No “Kinetic Efficiency”



Where is long Residence?
Are more potent compounds longer resident ?

Energy (R·L)‡

[R] + [L] Longer 
resident?

“Non” resident 
[RL]

[RL]

More 
potent

10 – 1000 nM
Long residence  

1 – 100 nM

Reaction coordinate diffusion limit

Intuitive, but not that helpful

We want the most potent compounds anyway
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Where is long Residence?
Are more polar molecules longer resident?

Dissociation Half-life vs TPSA
(R L)‡

Energy Is desolvation
relevant here?

(R·L)‡

150
Biaryl
Pyrazole
Pipa)

(R·L)‡

50

100 Pipa
6 Mem
Competitor
OtherTP

SA
  (

Å2 )

[R] + [L]

0

50

Short Residence 1 2 4 8 16 32

T
[RL]

Short Residence 1 2 4 8 16 32

Dissociation Half-life (h)
Reaction coordinate

No. 

Freedom to adapt polar surface area to modulate physicochemical properties
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Are Impermeable compounds are Long Resident in CRTh2 ?

Where is long Residence?

ResTime vs Permeability
100)

1

10 Biaryl
Mono
OtherA x1

0-6
 c

m
/s

0.01

0.1
Other
Pyr
RevPyr
PiPa

PA
M

PA
ea

bi
lit

y 
 (x

0.031250.06250.1250.25 0.5 1 2 4 8 16 32
0.0001

0.001 Std

Di i ti H lf lif (h)

Pe
rm

Dissociation Half-life (h)
Not Intuitive
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Where is long Residence?
Are Impermeable compounds are Long Resident in CRTh2 ?

ResTime vs Permeability
100)

1

10 Biaryl
Mono
OtherA x1

0-6
 c

m
/s

0.01

0.1
Other
Pyr
RevPyr
PiPa

PA
M

PA
ea

bi
lit

y 
 (x

0.031250.06250.1250.25 0.5 1 2 4 8 16 32
0.0001

0.001 Std

Di i ti H lf lif (h)

Pe
rm

Dissociation Half-life (h)
Not Intuitive
And ultimately not true

Initially looking at an incomplete picture

Design permeable compounds for oral delivery
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Where is long Residence?
Are more lipophilic compounds longer resident?

(R L)‡

Energy

Dissociation Half life vs cLogP(R·L)‡

[R] + [L]

Dissociation Half-life vs cLogP

6
Biaryl
Pyrazole

[R] + [L]

[R]  [L]

4

Pyrazole
Pipa
6 Mem
CompetitorLo

gP
[RL]

More 
potent

0

2

Short Residence 1 2 4 8 16 32

OthercL
Reaction coordinate

Probably just pushes up 
energy of [L] in free water

Short Residence 1 2 4 8 16 32

Dissociation Half-life (h)

Lipophilic molecules are often more potent,
because once bound, the molecule doesn’t want to go back into the surrounding water

26

, g g



Where is long Residence?
Are more lipophilic compounds longer resident?

Dissociation Half life vs cLogP

Within particular sub-series, there was often a relationship

Dissociation Half-life vs cLogP

6

7-Azaindole 
IC50 21 nM
Diss t½ 5 h
cLogP -0.6

isoxazoles

4

Lo
gP

CF I d l

0

2

Short Residence 1 2 4 8 16 32
cLCF3-Indole 

IC50 37 nM
Diss t½ 27 h
cLogP 5.9

Short Residence 1 2 4 8 16 32

Dissociation Half-life (h)

5-fold increase in Dissociation half-life
For a 1,000,000-fold increase in lipophilicity

Workable in final optimisation, but not without its associated risks for oral delivery
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Where is long Residence?
Series by series First example of series

Pyrazole  Series

10

15

po
un

ds

Competitor Compounds

4

5

po
un

ds

6-Mem Series

4

5

po
un

ds

5

10

um
be

r o
f  

C
om

1

2

3

um
be

r o
f  

C
om

1

2

3

um
be

r o
f  

C
om

Biaryl  Series

1 min    1    2   4    8   16  32  
0

Dissociation Half-life (h)

N
u

Pipa Series

1 min    1    2   4    8   16  32  
0

Dissociation Half-life (h)

N
u

1 min    1    2   4    8   16  32  
0

Dissociation Half-life (h)

N
u

40

60
C

om
po

un
ds

6

8

10

C
om

po
un

ds

1 min 1 2 4 8 16 32
0

20

N
um

be
r 

of
  

1 min 1 2 4 8 16 32
0

2

4

N
um

be
r 

of
  

1 min    1    2   4    8   16  32  

Dissociation Half-life (h)
1 min    1    2   4    8   16  32  

Dissociation Half-life (h)

 Chemical series drives Residence Time: If you’ve got it, you’ve got it and if you don’t, you don’t
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 First compound of series dictates the trend.



Homing in on Residence Time in the Biaryl series

4-Azaindole Me-4-Azaindole

GTPS IC50 (nM) 14 16

Dissociation t½ (h) 1 3 21Dissociation t½ (h) 1.3 21

A Magic Methyl for SKR ?A Magic Methyl for SKR ?
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Homing in on Residence Time in the Biaryl series

IC50 5 nM

Di i ti

IC50 8 nM

Di i tiDissociation 
half-life

9 h

Dissociation 
half-life

11 h

OHO SOHO

N

N

HN

O

inactive

IC50 4 nM

Dissociation 
half-life
2 i25 min

Long Residence Time in the Biaryls also comes from an H-Bond Acceptor in ortho
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Amide Rotamers

OHO CF3

N

O
50:50

by NMR

cis trans
IC50 14 nM
Dissociation 
half-life 2 h  

OMe

cis trans

OHO
N O

CF3

inactive

OMe

IC50 27 nM
half-life 1.5 h

Long Residence Time in the Biaryls comes from an H-Bond Acceptor in a specific orientation

half life 1.5 h 
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Can we check the H-Bond Acceptor location?

NO

N

OHO
N

F

3

Ab initio minimisation

Compound 1

GTPS IC50 20 nM

Dissociation t½ 10 h

2 3

4 nM 6 nM

1 7 h 18 h

32

Dissociation t½ 10 h 1.7 h 18 h



Can we achieve truly long residence?
Position-by-position analysis of good 
t t l f t f R id Tistructural features for Residence Time

Benzyl to bump
up lipophilicity

Minimum expression of 
potency and long residence

3º amide as
H-bond acceptor

Acetic acid NO

Isoxazole as 
H-bond acceptor

potency and long residence H-bond acceptor 

N

N

OHO

Cl Chloro is 
OK here

N

methyl stub

AzaindoleAzaindole

GTPS IC50 (nM) 2.5 nM

Dissociation t½ (h) 46 ± 15 h

GTPS IC50 (nM) 14 nM

Dissociation t½ (h) 1.5 h

cLogP 4.8

cLogD 2.4

cLogP 1.1

cLogD -1.1

33

Once-a-day purely from Residence Time ?



 For a purely antagonistic effect, prolonging Receptor Occupancy prolongs PD effect 

CRTh2: Can Residence Time Help ?
p y g , p g g p p y p g

 You will only really appreciate a PK-PD disconnection if Dissociation half-life >> PK terminal half-life 

 For GPCR antagonism, you should count on extending the PD effect by half a half-lifeg , y g y

 We are pretty good at explaining what’s behind Structure-Activity Relationships (SAR)
Structure-Kinetic Relationships (SKR) are in their infancy and/or qualitative

 To find Long Residence, you need to look for it

Efficacy

PotencyResidence
Time
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