<u>CRTh2</u>: <u>Can Residence Time help ?</u>

25th Symposium on Medicinal Chemistry in Eastern England

Fielder Centre, Hatfield, Hertfordshire, UK

Thursday 24th April 2014

Rick Roberts Almirall Barcelona, Spain

Introduction

Paul Ehrlich, The Lancet (1913), <u>182</u>, 445

"A substance will not work unless it is bound"

100 years on:

"how long it's bound determines how it works"

Energetic concept of Residence Time

Standard model

Potency is determined by the difference between two **rates**

Potency = concentration

Equilibrium binding assays measure potency but ignore kinetics

Energetic concept of Residence Time

Standard model

Structure Kinetic Relationships (SKRs)

have been largely ignored:

Residence Time Dissociation half-life Slow or fast kinetics Off-rate, k_{off}

The binding kinetics are controlled by the transition state energy

slow associating compounds that are slow dissociating

fast associating compounds that are fast dissociating

Are all equipotent

If we can control the transition state energy, we can control the binding kinetics

Why bother to control Binding Kinetics?

Residence time / Dissociation half-life

Partial vs Full agonism

- M3 agonists
- A_{2A} agonists

Efficacy vs substrate concentration

- Lovastatin Candasartan **Mechanism-based toxicity**
- Clozapine Celecoxib

Haloperidol Aspirin

Duration of Action

- Ipratropium vs Aclidinium **Kinetic Selectivity**
- M3 vs M2 antagonism

The CRTh2 Programme

Brief introduction to CRTh2

Real name:

- Chemoattractant Receptorhomologous molecule expressed on T-Helper 2 cells
- Also known as DP2

CRTh2 activation:

- induces a reduction of intracellular cAMP and calcium mobilization.
- is involved in chemotaxis of Th2 lymphocytes, eosinophils, mast cells and basophils.
- inhibits the apoptosis of Th2 lymphocytes
- stimulates the production of IL4, IL5, and IL13, leading to:
 - eosinophil recruitment and survival
 - mucus secretion
 - airway hyper-responsiveness
 - immunoglobulin E (IgE) production
 - etc

CRTh2 and DP1 review. Nat. Rev. Drug Disc. (2007), 6, 313

CRTh2 antagonism:

- Should block pro-inflammatory PGD₂ effects on key cell types
- Potential benefit in:
 - asthma
 - allergic rhinitis
 - atopic dermatitis.

Why Long Residence Time in CRTh2?

Our internal programme

We want to find a once a day, oral, low dose (≤ 10 mg) CRTh2 antagonist for mild-moderate asthma

- Clinical dosing of first CRTh2 antagonists high dose and twice daily
- Therefore, we chose to deliberately look for slowly dissociating CRTh2 antagonists:
 - To maintain receptor occupancy beyond normal PK and extend duration of action
 - to reduce the pressure of finding a carboxylic acid with desirable PK properties
 - to add the possibility of extra protection due to insurmountability against PGD₂ burst

Are there slow-dissociating CRTh2 antagonists?

Compound	Potency		Dissociation half-life*	Reference
Ramatroban	pA ₂	36 nM	5 min	<i>Mol. Pharmacol.</i> (2006), <u>69</u> , 1441
TM-30642	pA ₂	20 nM	8 min	/ /
TM-30643	pA ₂	4 nM	(12.8 years)	/ /
TM-30089	pA_2		(13.5 years)	/ /
MK-7246	K _i	2.5 nM	33 min	<i>Mol. Pharmacol.</i> (2011), <u>79</u> , 69
PGD ₂	K _D	11 nM	11 min	Bioorg. Med. Chem. Lett. (2011), <u>21</u> , 1036
AM432	IC ₅₀	6 nM	89 min	/ /
ADC-3680	K _i	1.6 nM	20 min	American Thoracic Society (ATS), May 17-22, 2013

In vitro dissociation assays CRTh2

Surmountability vs Insurmountability

Surmountability is just a question of time

in vitro washout Dissociation assay

Pyrazoles

- Indole nucleus developed by Oxagen. Beginnings of slow dissociation observed
- First series of Pyrazoles gave active compounds, but no significant residence time (BMCL, 2013, 23, 3349)
- Second series of Reverse Pyrazoles gave a similar story (Eur J Med Chem, 2014, 71, 168)

SAR pretty good. No SKR advances observed in either core or tail sections

Pyrazoles series abandoned for general lack of Residence time

Pipas

- Third series of Pyrazolopyrimidinones (Pipas) gave active compounds with long residence (manuscript in preparation)
- Core SAR flat. Core SKR varied

Pyrazolopyrimidinones (Pipas)

Ĥ

	Oxagen	PiPa	N-Me	N-Bn	diMe	N-Me*	N-CHF ₂ *
GTP γ S IC ₅₀ (nM)	14	5	5	1	4	5	2
Dissociation t½ (h)	1.3	2.3	5.3	6.6	10	8	21

Pipas

- Tail SAR flat. Tail SKR varied
- Sulphone positioning ultimately affects SKR

R² GTPγS IC₅₀ **Dissociation t**¹/₂ \mathbb{R}^1 GTPγS IC₅₀ **Dissociation t**¹/₂ R 5 nM Н Н 2.3 h Ph 170 nM n.d. MeO 4.2 h Н 4 nM Me 900 nM n.d. Н F 5 nM 3.3 h Bn 3 nM 0.9 h MeO F 7 nM 23 h Ultimately Potent but no duration

- Pipa series was essentially impermeable.
- Not suitable for an oral program
- Still, a valuable tool to validate the PK-PD disconnection in guinea pig

PK-PD Disconnection Model

F-Indole guinea pig data Dissociation t¹/₂ **1.3 h <** PK t¹/₂ **5.3 h**

- Inhibition of eosinophilia (PD) is purely dependant upon systemic levels (PK)
- No PK-PD disconnection

diMe-Pipa guinea pig data Dissociation t¹/₂ 20 h >> PK t¹/₂ 0.9 h

- Inhibition of eosinophilia (PD) outlasts drop in systemic levels (PK) at 17h after dosing
- PK-PD disconnection (hysteresis)

PK-PD Disconnection Simulations

For the greatest observable effect, Dissociation half-life >> PK half-life

🕭 Almirall

How long is long residence ?

Receptor Occupancy by exponential decay

An antagonist fully saturating a GPCR will lose robust efficacy after about half a Dissociation Half-life

A twice-daily compound achieves 12 h PD coverage due to PK levels

To turn a twice-daily compound into a once-daily compound,

we want to add on a Dissociation Half-life of \geq 24h

Molecular Determinants of Long Residence:

Structure Kinetic Relationships (SKR)

Selected lit reports or Structure Kinetic Relationships (SKRs)

- Trend analysis of D2 antagonists. *Bioorg. Med. Chem* (2011), <u>19</u>, 2231.
- Trend analysis of Pfizer and literature data. *Med. Chem. Comm.* (2012), <u>3</u>, 449
- Review of molecular determinants. Drug Disc. Today. (2013), <u>18</u>, 667

Are Bigger compounds longer resident?

Molecular size / weight ? Lipophilicity ? Charged state ? Don't know ?

Are more potent compounds longer resident?

Intuitive, but not that helpful

We want the most potent compounds anyway

Are more polar molecules longer resident?

No.

Freedom to adapt polar surface area to modulate physicochemical properties

Are Impermeable compounds are Long Resident in CRTh2?

ResTime vs Permeability

Not Intuitive

🕭 Almirall

Are Impermeable compounds are Long Resident in CRTh2?

ResTime vs Permeability

Not Intuitive And ultimately not true

Initially looking at an incomplete picture

Design permeable compounds for oral delivery

Are more lipophilic compounds longer resident?

Lipophilic molecules are often more potent,

because once bound, the molecule doesn't want to go back into the surrounding water

Are more lipophilic compounds longer resident?

Within particular sub-series, there was often a relationship

5-fold increase in Dissociation half-life For a 1,000,000-fold increase in lipophilicity

Workable in final optimisation, but not without its associated risks for oral delivery

- Chemical series drives Residence Time: If you've got it, you've got it and if you don't, you don't
- First compound of series dictates the trend.

Homing in on Residence Time in the Biaryl series

	4-Azaindole	Me-4-Azaindole
GTP γ S IC ₅₀ (nM)	14	16
Dissociation t1/2 (h)	1.3	21

A Magic Methyl for SKR ?

Homing in on Residence Time in the Biaryl series

Long Residence Time in the Biaryls also comes from an H-Bond Acceptor in ortho

Amide Rotamers

Long Residence Time in the Biaryls comes from an H-Bond Acceptor in a specific orientation

Can we check the H-Bond Acceptor location?

Compound	1	2	3
GTP γ S IC ₅₀	20 nM	4 nM	6 nM
Dissociation t1/2	10 h	1.7 h	18 h

Can we achieve truly long residence?

Position-by-position analysis of good structural features for Residence Time

	Azaindole
GTP γ S IC ₅₀ (nM)	14 nM
Dissociation t ¹ / ₂ (h)	1.5 h
cLogP	1.1
cLogD	-1.1

	Azaindole		
GTP γ S IC ₅₀ (nM)	2.5 nM		
Dissociation $t\frac{1}{2}$ (h)	46 ± 15 h		
cLogP	4.8		
cLogD	2.4		

Once-a-day purely from Residence Time ?

<u>CRTh2</u>: <u>Can Residence Time Help ?</u>

- For a purely antagonistic effect, prolonging Receptor Occupancy prolongs PD effect
- You will only really appreciate a PK-PD disconnection if Dissociation half-life >> PK terminal half-life
- For GPCR antagonism, you should count on extending the PD effect by half a half-life
- We are pretty good at explaining what's behind Structure-Activity Relationships (SAR) Structure-Kinetic Relationships (SKR) are in their infancy and/or qualitative
- To find Long Residence, you need to look for it

Acknowledgements

Medicinal Chemistry

Juan Antonio Alonso M^a Antonia Buil Oscar Casado Marcos Castillo Jordi Castro Paul Eastwood Cristina Esteve Manel Ferrer Pilar Forns Elena Gómez Jacob González GalChimia Sara López Marta Mir Imma Moreno Sara Sevilla Bernat Vidal Laura Vidal Pere Vilaseca

ADME

Manel de Luca Peter Eichhorn Laura Estrella Dolores Marin Juan Navarro Montse Vives Miriam Zanuy

Respiratory Therapeutic Area

Mónica Bravo Marta Calbet José Luís Gómez Encarna Jiménez Martin Lehner Isabel Pagan

Biological Reagents and Screening

Fani Alcaraz Miriam Andrés Julia Díaz Teresa Domènech Vicente García Rosa López Adela Orellana Sílvia Petit Israel Ramos Enric Villanova

Integrative Pharmacology

Clara Armengol Laia Benavent Luis Boix Elena Calama Amadeu Gavaldà Beatríz Lerga Sonia Sánchez

Computational and Structural Chemistry and Biology Sandra Almer Yolanda Carranza Sònia Espinosa Estrella Lozoya

Pathology and Toxicology

Ana Andréa Mariona Aulí Cloti Hernández Neus Prats

Development

Cesc Carrera Nieves Crespo Juan Pérez Andrés Juan Pérez García Gemma Roglan Francisco Sánchez Carme Serra

Intellectual Property Houda Meliana Eulàlia Pinyol

Management

Paul Beswick Jordi Gràcia Victor Matassa Monste Miralpeix

