# BioEcus A Galápagos Company

#### Introduction to FBDD Fragment screening methods and library design

Samantha Hughes, PhD

Fragments 2013 RSC BMCS Workshop 3<sup>rd</sup> March 2013

©Copyright 2013 Galapagos NV

## Why "fragment" screening methods? Guess the potency for LE=0.3

| MW  | Heavy Atoms | Predicted <i>K</i> <sub>i</sub> for LE=0.3 |
|-----|-------------|--------------------------------------------|
| 150 | 11          | ?                                          |
| 200 | 15          | ?                                          |
| 250 | 19          | ?                                          |
| 300 | 23          | ?                                          |

- Need to screen at higher ligand concentrations than HTS
- Require robust assays capable of quantifying weak binding



### What methods are we using ? Practical fragments Poll

A range of methods are used for fragment screening

% of respondents who used these techniques

poll on Practical fragments Blog October 2011





# Principles of screening methods

| High concentration functional screening (biochemical assay) | measure substrate or product levels (MS, fluorescence, abs, CE)           |
|-------------------------------------------------------------|---------------------------------------------------------------------------|
| NMR ligand detected                                         | observe effects on 1H or 19F NMR spectra of fragment                      |
| Surface Plasmon Resonance<br>(biosensor methods)            | detect changes in optical properties of surface containing protein/ligand |
| Thermal shift                                               | measure thermal stability shift of protein                                |
| X-ray crystallography                                       | observe electron density of bound fragment                                |
| Computational                                               | docking and scoring of fragments                                          |

See Siegal et al, Drug Discov Today (2007) 12, 1032-1039 for an overview of methods



# Principles of screening methods

| NMR protein detected      | observe effects on NMR spectra of labelled protein                 |
|---------------------------|--------------------------------------------------------------------|
| Tethering                 | fragments form disulfide with Cys detect mass of covalent complex  |
| Native MS                 | detect mass of bound noncovalent complex                           |
| Isothermal calorimetry    | measure solution temperature changes upon ligand binding           |
| Capillary electrophoresis | measure change in mobility under electrophoretic gradient          |
| Microscale thermophoresis | detect change in hydration shell of protein                        |
| Affinity chromatography   | immobilise protein on a column, measure retention time of fragment |

See Siegal et al, Drug Discov Today (2007) 12, 1032-1039 for an overview of methods



#### **Information that can be obtained** From one or more fragment screening methods

- Fragment binding (yes/no) or inhibition (yes/no)
- Dissociation/inhibition constants  $K_{d}$ ,  $K_{i}$
- Binding mode or binding site
- Stoichiometry
- Kinetics: on-rate, off-rates
- Thermodynamics ( $\Delta G$ , $\Delta H$ ,  $\Delta S$ )





# Practical considerations

- Assay throughput and concentration range
- Protein size, stability, purity & amount required
- Labels (isotope labels, fluorescence tags)
- Reducing false positives and false negatives
- Orthosteric/allosteric binding site; competitive ligand available?



### Orthogonal screening Considerations

- Sequential orthogonal screening used to confirm initial fragment hits
  - gain more information on hits
  - ideally show a <u>functional effect</u> and confirmed <u>binding</u> to target
- However, true hits often do not show up in all methods



Parallel orthogonal screening can identify <u>more</u> starting points for FBDD

8

#### Fragment libraries Attractiveness

 The purpose of a general fragment screening library is to provide diverse, attractive starting points for medicinal chemistry

a good quality fragment library is key

- What makes an attractive fragment ?
  - > Astex "Rule of 3" is a useful guideline for physicochemical properties
  - further aspects to consider in library design/selection



Rule of 3: Congreve et al, Drug Discov Today (2003) 8, 876-877



# Generic library generation process



Schuffenhauer *et al*, Curr. Top. Med. Chem (2005), 5, 751-762 Chen and Hubbard, J Comput Aided Mol Des (2009) 23, 603-620 Blomberg *et al*, J Comput Aided Mol Des (2009) 23, 513-525 Lau *et al*, J Comput Aided Mol Des (2011), 25, 621-636



# Generic library generation process



#### A substantial investment of time and resource

