

Radiation Effects and Nuclear Power

Simon M. Pimblott

School of Chemistry, Univ. of Manchester

Dalton Nuclear Institute

Radiation effects are important in:

- Waste remediation and management
- Spent fuel reprocessing
- Deep geological disposal
- Continued generation
- Naval propulsion
- Next generation new build
- Advanced reactors & fuel cycles

Waste Tanks & Ponds

Next Generation Nuclear Plant

Pu & Spent Fuel Disposition

Fundamental Underpinning Research

Aim:

To develop a mechanistic understanding of performance deterioration and chemical degradation to allow a predictive description of radiation-induced effects and usage lifetime.

- Interfacial water-oxide-metal process
- Heterogeneous systems
- Humid and damp systems
- Hydrocarbons and organic polymers
- Chlorinated polymers & materials

Radiation Effects and Geological Disposal

Simon M. Pimblott

School of Chemistry, Univ. of Manchester

Dalton Nuclear Institute

Fig. 1. Evolution of α , β and γ radiations as a function of time for a 55 GWd t⁻¹ UOX fuel. Data are calculated from the CESAR isotopic evolution code [35].

Journal of Nuclear Materials 346 (2005) 66–77 Christophe Poinssot et al.

Research Projects for 2009-2010

Radiolytic off-gassing of organics in aqueous environments. *(NNL, NDRL)* © GS

- Radiolytic degradation of PVC. (NNL, NDRL)
 GS
- Effects of mixed radiation fields. (NDRL)
- Radiolysis of water in zeolites. (CEA)

 \$EU-Laserlab

Aqueous radiation chemistry of U(IV). (CEA, NDRL)

Radiation damage to biopolymers and biosystems. (PSI, Univ. of Rochester) • PD

H₂ production in the irradiation of water in contact with oxide particles. (NNL, NDRL) © GS **\$EPSRC**

Impact of radiation on microbial cells. (SEAS)
GS \$BBSRC \$NDA

Radiations chemistry of extremely alkaline systems. (NNL, NDRL) GS

Radiolytic degradation of silicones. (UKAEA, NDRL) **\$NDA-DRP** Polymeric Materials in Nuclear Environments

Aim: To understand and quantify performance deterioration and chemical degradation to allow a predictive description of radiationinduced effects and usage lifetime.

Radiolytic Degradation of PVC

Polymers are found throughout the nuclear portfolio.

- Nuclear waste materials
- Encapsulants
- Nuclear Infrastructure

Questions about

- Perfomances
- Degradation
- Off-gasing
- Non-aqueous phase liquid formation

Effects due to

- Aging
- Local environment
- Radiation fields

Understanding Performance of Irradiated Polymers: What Does This Involve?

Polychloroethene (IUPAC)

www.3dchem.com

Thermoplastic polymer, rigid material Important physical properties: flexibility, softness, transparency Additives (plasticisers and stabilisers)

Applications in Nuclear industry

- PVC insulation and jacketing materials
- radioactive waste packaging material

Concerns: hazardous compounds released !

Common applications

Effects of ionizing radiation on PVC

Current Status

- Significant component of Nuclear waste management portfolio.
- \succ Post-irradiation degradation of PVC \rightarrow physical and chemical changes.
- Main products defined, but
- Mechanisms poorly understood and inadequately characterised.
- Experiment-with-modelling approach to understand and elucidate the effects of radiation (alpha, beta, gamma or n) on PVC in different environments (i. e. the presence of overgases, humidity, hydrocarbons, ceramic particles etc.).
- Experimental work at Univ of Notre Dame (USA) with complementary work at the Central Laboratory of NNL involving plutonium contaminated PVC.

Experiments

PVC Samples

PVC powder, no additives

UPVC film

is

γ -Radiolysis

- Shepherd 109-68 ⁶⁰Co source, self-contained dose rate of ~8.3 kRads min⁻¹ (83 Gy min⁻¹).
- Irradiation: room temperature, 2.5 h (10 kGy) and 12 h (50 kGy).

⁴He-Radiolysis

- FN Tandem Van de Graaff facility of the University of Notre Dame Nuclear Structure Laboratory.
- Irradiation: with completely stripped ions, charge beam current ~1.5nA, room temperature.

Radiation Quality

Experimental techniques

Chromatography

- ⇒ Gas chromatography (GC)
- ⇒ Ion chromatography (IC)

Spectroscopy

⇒ EPR

- ⇒ UV/VIS absorbance
- ⇒ FT-IR transmission

Experimental Setup: Gamma Radiolysis

Experimental Setup: Ion Beam Radiolysis

Radiation induced degradation of chlorinated polymers

Off-gasing of corrosive HCI and H₂ from PVC

Yields and post-irradiation behaviour

Structural degradation of irradiated PVC

- Change in molecular weight and distribution of polymer chain lengths
- Formation of conjugated C=C systems
- Oxidation and production of C=O chromophores

Chemical evolution of irradiated polymer

Long term survival of radicals

Radiation-induced H₂ Production

	M _n (Dalton)	γ (molec./100e V)	α (molec./100e V)
De-aerated	22 k	0.23	0.45
De-aerated	47 k	0.27	0.41
De-aerated	99 k	0.25	0.39
Aerated	22 k	0.22	
Wet & Aerated	22 k	0.22 - 0.67	

H₂ Production from PVC-H₂O Systems

Radiation-induced HCI Production

	M _n (Dalton)	γ (molec./100e V)	α (molec./100e V)
Wet & aerated	22 k	19.6	1.18
Wet & aerated	47 k	33.8	
Wet & aerated	99 k	32.5	

Post Irradiation Release of HCI

Radiation induced degradation of chlorinated polymers

Off-gasing of corrosive HCI and H₂ from PVC

Yields and post-irradiation behaviour

Structural degradation of irradiated PVC

- Change in molecular weight and distribution of polymer chain lengths
- Formation of conjugated C=C systems
- Oxidation and production of C=O chromophores

Chemical evolution of irradiated polymer

Long term survival of radicals

Colour changes

- PVC degrades with formation of observable chromophores free radicals, conjugated double bonds, carbonyl groups, etc.
- Extent of discolouration depends on applied dose, irradiation environment and post-irradiation time.

Uv-vis Spectroscopy of Radiation-induced Degradation of PVC Post Irradiation Evolution

IR Spectroscopy of Radiation-induced Degradation of PVC

Effect of Dose

IR Spectroscopy of Radiation-induced Degradation of PVC Post Irradiation Evolution

Radiation induced degradation of chlorinated polymers

Off-gasing of corrosive HCI and H₂ from PVC

Yields and post-irradiation behaviour

Structural degradation of irradiated PVC

- Change in molecular weight and distribution of polymer chain lengths
- Formation of conjugated C=C systems
- Oxidation and production of C=O chromophores

Chemical evolution of irradiated polymer

Long term survival of radicals

EPR spectroscopy

Variations with time (1.3-53 hr) of the EPR spectrum of γ -irradiated in air 22k PVC powder (50 kGy).

Spectrum of multiple overlapping signals with two observable components: fast decay of primary radicals and slow decay of long-lived peroxyl radical.

EPR spectroscopy

Variation with time (0-26 hr) of the EPR spectra of 22k PVC powder, γ -irradiated in vacuo to 10 kGy.

Polyenyl radical(s) can be very stable under vacuo.

Reaction Mechanisms

Initiation reaction: C-CI scission.

Radical reactions (propagation):

CI \rightarrow R-CH-CHCI-R + HCI R-CH-CHCI-R \rightarrow R-CH=CH-R + CI R-CH₂-CH-R \rightarrow R-CH=CH-R + H

Termination reactions:

 $R^{\bullet} + R \longrightarrow R_2$

HCI evolution (free radical mechanism)

Formation of H₂ from H atom precursors

Predictive (Modeling) Capability

Modelling of polymer degradation

Prediction of

- physical performance
- chemical reactivity

of hydrocarbon and chlorinated hydrocarbon polymers under irradiation.

Development of a 10 keV section of a 5 MeV ⁴He²⁺ ion track in water

September of the contraction of

Complete description of physical and chemical evolution of radiation track

Research Funding

The University of Manchester Dalton Nuclear Institute

The

Nuffield Foundation

National Science Foundation

Nuffield Foundation

Acknowledgements

School of Chemistry University of Manchester

Ashley Brown Rafal Feliga Matthew Hancock Monica Huerta Laura Nunns Paul Kaufman Pavlina Pavlova Stephenie Palmer Ashley Richardson Mikko Riese

Oxford University

Nick Green

Radiation Laboratory University of Notre Dame

M. Soledad Araos Eduardo A. Carrasco-Flores Maria Davidkova Rowan Henry Bratoljub H. Milosavljevica Tingting Mu Barbara Pastina Puspalata Rajesh

NNL

Howard E. Sims

and especially

"The lack of fundamental data for the most important chemical species is the single largest factor limiting the successful application ... to problems of industrial interest"

NAS Report on Database Needs