Novel Laboratory Methods to Study Reactive Transport in Groundwater

Steven A Banwart
Kroto Research Institute, U. Sheffield

Royal Society of Chemistry
Environmental Chemistry Group
23rd September 2009
Scope of the Presentation

- In situ bioremediation by natural attenuation
- Field scale observations and modelling
- Bench scale studies of model plumes
- Studies of attached microbial growth
Monitored Natural Attenuation

- Application of passive biotechnology in situ
- Soils and aquifers are treated as natural bioreactors
- Avoids excavating or pumping out contamination
- *In situ* natural processes reduce environmental risk
 - Dilution to reduce concentration
 - Adsorption to slow down transport
 - Biodegradation to reduce mass
 - Precipitation to immobilise
Conceptual Plume Model
(from D.N. Lerner)

- Ground-water flow
- Slow non-equilibrium mixing
- E-donor or e-acceptor
- Contaminant flux across control plane
- Mixing and anaerobic degradation in the plume interior
- Mixing and aerobic degradation at the plume fringe
The In Situ Bioreactor

Source Term: Organics as Electron Donors

Vertical Dispersive Mixing: O_2, NO_3^-

Horizontal Dispersive Mixing: O_2, NO_3^-

Plume Residual: organics; Mineral Oxidants: FeOOH, MnOOH

Horizontal Dispersive Mixing: O_2, NO_3^-

Background Groundwater: O_2, NO_3^-

Vertical Dispersive Mixing: O_2, NO_3^-

Electron and Mass Flux Balance
Anaerobic Biodegradation

Diagram:
- Complex Organic Matter → Hydrolysis
- Sectors: Aromatics, Fermenters, H₂ Acetate Short Chain Fatty Acids, H₂ and SCFA oxidisers, LCFA Oxidisers
- CO₂

- Aromatics
- Sugars Amino Acids → Fermenters
- Long Chain Fatty Acids
- H₂ Acetate Short Chain Fatty Acids
- H₂ and SCFA oxidisers
- LCFA Oxidisers
Numerical Simulations

- Handling Complexity
 - Physical transport processes
 - Geochemical processes
 - Microbiological system dynamics
 - Spatial variability
 - Lots of variables (20-25 solutes, minerals, microbes)

- Apply advanced numerical methods
 - Parallel processors
 - Unstructured mesh generation
 - Automatic adaptive mesh
 - Multi-grid solution methods

The Corona
Plume-Aquifer Interface

Final Grid
• Numerical models now analogous to climate simulations with high speed computing
• Microbiological ecosystem dynamics embedded with geochemical reactive transport model
• Physical and chemical processes well understood
• Understanding microbial processes lags far behind
 – Unknown genotypes and physiologies
 – Unknown interactions with environment
 – Unknown kinetics and parameter values
 – Ripe for a step-change over next decade
Model Laboratory Systems

- 15cm x 30cm bed of quartz sand
- Introduce flow at a point
- Sample flow downstream
- Lab analogue to field plumes
- Controlled experiment
 - Good mass balance
 - Can “design” the reactions
 - Can monitor with fluorescent tracers
Image Analysis
Spatial Resolution of $[O_2(aq)]$
Mathematical Modelling

- Kinetic parameters from batch reactors
- Include cell death
- Simulate active cell numbers
- No change in community
- Map biodegradation rates spatially
Simulating Biomass and Biodegradation Rates
Biofilm on sand grains
RC92 attached to hydrophobic PS
Macromolecules in biofilms

Use confocal Raman micro-spectroscopy to investigate the macromolecular make-up of biofilms

- Demonstrate that planktonic and biofilm cells are phenotypically different
- Verify the role of lipids in *Rhodococcus* sp. biofilms
- Identify key molecules involved in Gram negative cell attachment and biofilm proliferation
Future work

• Investigate by confocal microscopy the putative role for proteins in *Sphingomonas* biofilm formation

• Establish rules for ecological selection of classes of organisms and function within natural biofilms
A Quick Glance to the Past

- Metal coordination chemistry and electrolyte theory
- Synthetic ligands and metal ion hydrolysis
- Mineral surface chemistry
- Aquatic chemistry with Garrels, Mackenzie
- What next?

Alfred Werner 1913 Nobel
- Schwarzenbach EDTA chemistry
 - Svante Arrhenius 1903 Nobel
 - Sillén Aqueous coordination chemistry
 - Stumm and Schindler Surface coordination chemistry

?
A Look to the Future

• The Cell-Mineral Interface
 – Fundamental research on chemistry of living surfaces
 – Combines molecular and cell biology with nanosciences
 – Big impacts on many environmental applications
 – Builds the biology component into phase interface reactions
 – Provides the conceptual basis for process models

• Biological Imaging
 – Biophotonics: interaction of near-vis light sources with organisms
 – Use of non-destructive, non-invasive imaging in real time
 – Provides chemical state information with spatial structure of living cells
 – Combines with molecular biology of living cells
Acknowledgments

The University of Sheffield Cell-Mineral Research Centre

Civil & Structural Eng Animal & Plant Sciences Chemistry
Physics & Astronomy Eng Materials Chemical & Process Eng

• Field Studies: Steve Thornton, David Lerner, Ryan Wilson, et al.
• Modelling: Ian Watson, Sascha Oswald, Roger Crouch
• Lab physical model: Helen Rees, Jon Bridge
• Attached growth: Joh Andrews, Ammar Razak, Steve Rolfe, Julie Scholes
• Confocal Raman microspectroscopy: Jesus Ojeda, Wei Huang
• Aquifer community studies: Thanos Rizoulis

Funding: EPSRC, NERC, BBSRC, EC, EA
Thank You

End