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Abstract: Knowledge space theory was used for mapping students’ knowledge structures in 
calculating density, mass-percent, molar mass and molar volume. Data were collected among the 
9-10th graders (age 15-16) at two different secondary grammar schools. Students’ responses were 
evaluated in a binary fashion and were used for determining knowledge structures with a 
systematic trial-and-error process using χ2 analysis. Based on the students’ knowledge structures, 
the critical learning pathways, the characteristic hierarchies of concepts and the critical concepts 
were identified and analysed. In students’ cognitive structure, molar volume is built on the 
concept of molar mass. With one group there is a strong connection between the concepts of 
density, molar mass, molar volume and the calculation of gas volume while with the other group 
there is no such connection. The reason for this disconnected cognitive structure is the difference 
in the learning method between the two groups. Students from the second school learned the 
concepts of density, molar mass, molar volume and mass percent by rote-learning using 
mnemotechnics. This is a good example that rote learning makes the finding of the connections 
between concepts hard and gives separated and non-mobilizable knowledge. [Chem. Educ. Res. 
Pract., 2007, 8 (4), 376-389.] 
 
Keywords: knowledge structure, knowledge space theory, density, mass percent, molar mass, 
molar volume, empirical study  
 
 
Introduction 

 
In studying and modelling the cognitive organisation of knowledge we often use graphs 

and networks. Concept maps can be used for exploring the knowledge structure of 
individuals, and knowledge space theory as a multidimensional model can be applied for 
studying the cognitive organisation of knowledge characteristic of a group of students.  

Knowledge space theory (KST) was developed in 1982 by Doignon and Falmagne and is 
described in a book by the same authors (Doignon and Falmagne, 1999). Basic concepts of 
this theory are: ‘knowledge space’, ‘knowledge state’, ‘knowledge structure’, ‘surmise 
relation’ and ‘critical learning pathway’. Knowledge space defines the knowledge needed to 
understand a certain subject. In mathematics or science this is defined by a set of problems 
that a student needs to be able to solve; these problems involve a hierarchical ordering. 
According to the surmise relation if a student is capable of solving a given problem at higher 
level of the hierarchy, we can surmise that – in ideal conditions – this student can also solve 
other problems that are at lower level of the hierarchy. In real situations the disturbing effect 
of the lucky-guess and the careless-error has to be taken into consideration. Each student is 

                                                           
† This paper is based on work presented at the 8th ECRICE Conference, Budapest, 31 Aug - 1 Sep 2006. 
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characterised by a knowledge state, which is the summation of the problems the student has 
solved correctly (for example: [1,3,4] means that the student could solve the problems 1, 3 
and 4). A representation of knowledge states for any group of students is called knowledge 
structure. The knowledge structure has to be well graded (e.g. each knowledge state must 
have a predecessor state and a successor state, except for the null state [0] and the final state 
with correct answers to all questions [Q]). There are several pathways through the knowledge 
structure between the null state [0] and the final state [Q]. The most common pathway is 
called critical learning pathway, which is the most probable order in learning concepts. Based 
on the knowledge structure one can determine the characteristic hierarchy of the knowledge, 
the most probable hierarchical connectivity of concepts, and the critical concept, the concept 
that most of the students are ready to learn. ‘Knowledge Spaces’ by Doignon and Falmagne 
(1999) presents the formal mathematical details of knowledge space theory. 

The application of KST to science concepts has been demonstrated firstly by Taagepera et 
al. (1997). In their survey, for three concepts (pressure, density and conservation of matter) 
the same multiple-choice pre-test for all grade level (4th through 12th graders) was 
administered before the topics were formally taught, and the identical post-test was given 
afterwards. Using KST analysis they constructed the knowledge structures, and suggested 
tentative critical learning pathways for each concept. They found that KST is a valuable 
quantitative assessment method for evaluating student knowledge for two reasons: showing 
the effectiveness of the classroom teaching experience, and suggesting the most probable 
learning pathways actually taken by the students.  

Later, Taagepera and Noori (2000) used KST to map students’ thinking patterns in 
learning organic chemistry. They defined a knowledge space in organic chemistry based on 
the electron density distribution as a fundamental organising principle. The comparison of the 
expert hypothetical critical learning pathway with the novice structure, the most common 
critical learning pathway deduced from student answers, showed that instead of understanding 
the structure-reactivity analysis on the basis of electron densities, the students mainly had 
algorithmic knowledge.  

In their third paper Taagepera et al. (2002) used KST for following the development of 
the bonding concept. Their test consisted of 15 questions in a hierarchical order of difficulty 
as determined by experts using electron densities as the organising principle. They found that 
student critical learning pathways differed from the expert pathway in two major areas: the 
understanding that hydrogen atoms have different electron densities depending on whether 
they are bonded to oxygen or carbon, and their ability to visualise hydrogen-bonded systems 
at the sub-microscopic level. Furthermore, KST analysis indicated a weak logic structure in 6 
of the 9 students groups. Most of the students seemed to have some disconnected information, 
which can be easily forgotten.  

Arasasingham et al. (2004) used KST to assess student understanding of stoichiometry. 
They prepared a seven-item test and defined the hypothetical expert learning pathway. Their 
reasoning was that an understanding of the visual and symbolic representations of individual 
molecules was important for the understanding of the visual, symbolic, and graphical 
representations of chemical reactivity, and all these elements were essential in numerical 
problem solving, conceptualising, and in solving a limiting reagent problem. Comparison of 
the student critical learning pathways with the expert pathway showed that, contrary to the 
overall logical connections for the experts (from visualisation, to symbolic representations, to 
problem solving), students overall thinking patterns were from symbolic representations, to 
numerical problem solving, to visualisation. This means that acquisition of visualisation skills 
comes later in the novice knowledge structure, and students can solve numerical problems 
using memorised algorithms. 

Chemistry Education Research and Practice, 2007, 8 (4), 376-389. 
 

This journal is © The Royal Society of Chemistry 



Z. Tóth       378 

Arasasingham et al. (2005) used KST also to assess the effect of web-based learning tools 
on student understanding of stoichiometry. KST analysis of the pre- and post-tests showed 
that web-based learning tools improved their understanding, but the critical learning pathways 
were the same on the pre-tests and the post-tests. This means that in the overall thinking 
patterns of the students the overall logical connections remained from symbolic 
representations, to numerical problem solving, to visualisation.  

Tóth and Kiss (2006) used KST to explore 13-17 year olds’ knowledge in identifying 
physical composition (pure substance, homogeneous mixture or heterogeneous mixture) and 
chemical composition (element or compound) of matter, as well as the state of matter (solid, 
liquid or gas) at the particulate level. Based on the student critical learning pathways, they 
could not detect long lasting changes in the students’ cognitive structure. Only slight and 
temporary changes could be observed in grade 9 (in identifying the state of matter), and in 
grade 8 (in identifying physical and chemical composition of matter).  

In all these publications cited above authors used KST mainly for constructing and 
analysing the characteristic knowledge structure of the students’ group, suggesting, analysing 
and comparing students’ and experts’ critical learning pathways, and analysing the 
distribution of the students’ knowledge states. Besides these outcomes of KST analysis, Tóth 
et al. (2007) have recently demonstrated additional possibilities. We applied KST to interview 
data with 1st graders prior knowledge about water. Using a systematic trial-and-error 
approach, the most probable hierarchical connectivity of concepts, the characteristic hierarchy 
of the knowledge – fitted best to the original response structure – was found. Based on the 
expert hierarchy, we could determine the critical knowledge (concept) that most of the 
students are ready to learn. 

This study shows how the KST analysis of the responses can be used for mapping and 
comparing students’ characteristic knowledge structures in understanding and applying basic 
physical and chemical quantities, e.g. in calculating density, mass percent, molar mass and 
molar volume, and in calculating density from molar mass and molar volume, as well as in 
calculating gas volume from mass percent, molar mass and molar volume.  

 
The aim of the study 

 
We used KST analysis to answer the following research questions: is there any similarity 

or difference between the students’ groups from two different secondary schools in the 
cognitive organisation of the basic concepts, namely 
1. in response structure; 
2. in characteristic knowledge structure; 
3. in the critical learning pathway as the most probable order in learning concepts; 
4. in characteristic hierarchy as the most probable hierarchical connectivity of concepts; and 
5. in critical concept as the concept that most of the students are ready to learn? 

 
Research methodology 

 
Instruments and subjects 
For this study we developed a questionnaire (Appendix) in which students were asked to 

fill in the empty boxes. To answer the first question students have to know the meaning of 
density.  In the second one, students have to use the relationship between mass percent, mass 
of solution and mass of solute to answer the question. The third question is connected with the 
concept of molar mass. The fourth calculation is related to the concept of molar volume. The 
correct solution of the fifth question needs the knowledge that density can be calculated not 
only from the mass and the volume, but also from the molar mass and the molar volume. As 
the relationship d = M / Vm is not usually taught directly, this question may be assigned as a 
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‘problem’ type item.  In the sixth item students have to calculate the volume of a gas from the 
mass percent, the molar mass and the molar volume using a given network with empty cells. 
This question is an ‘algorithmic’ or ‘exercise’ type item. 

The content validity of the test was checked by the chemistry teachers of the secondary 
schools (I) and (II). The reliability coefficients (Cronbach-alpha) were found 0.654 and 0.631 
for the test in the case of students’ group (I) and (II), respectively. These are relatively low 
values, but one cannot expect better values because (a) the number of the items is small, and 
(b) this is not a classic homogeneous test, but contains items with differing complexity and 
difficulty. 

Data were collected among the 9-10th graders (age 15-16) at two different Hungarian 
secondary high schools (I) and (II).  The number of students involved this survey was 65 and 
57, respectively.  

 
Data analysis 

 
For KST analysis responses were scored in a binary fashion, as they were right (1) or 

wrong (0). We used Potter’s Visual Basic computer program (Potter) for the calculations: for 
the conversion of response structures into knowledge structures, as well as for finding critical 
learning pathways, the characteristic hierarchies of the concepts, and the critical items. One of 
the input files of Potter’s software is the binary file (RESP.TXT) containing the response 
states with its population (Figure 1).  

 
The second input file (KNOW.TXT) contains the assumed knowledge states with the 

estimated probabilities of lucky-guess and careless error for each item (Figure 2). As shown 
by the values in the first two rows of this input file, we estimated 10% (0.1) probability for 
both lucky-guess and careless error. 

The Potter’s Visual Basic computer program is a simplified version of KST analysis. This 
program calculates the predicted knowledge state populations, normalise them, and calculate 
the chi-squared values from the input data. Details are available on the internet (Potter). 

Figure 1. Constructing the first input file (RESP.TXT) for Potter’s program from the students’ 
distribution among the different response states (see also Figure 4). 

 
Q1, Q2, Q3 etc. stand for the Questions 1, 2, and 3 etc. respectively, with ‘1’ representing a correct 
answer and ‘0’ an incorrect answer, and N is the number of students at the same response state 
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  Figure 2. Second input file (KNOW.TXT) in 
Potter’s program. 

 
0.1 0.1 0.1 0.1 0.1 0.1 -1
0.1 0.1 0.1 0.1 0.1 0.1 -1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
1 1 1 0 0 0 0
1 0 1 1 0 0 0
0 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 1 0 0 1 0
1 1 1 1 1 0 0
1 1 1 1 0 1 0
1 1 1 1 1 1 0

 
The 1st and 2nd rows contain the probabilities of lucky-
guess and careless-error for each item (Q1-Q6). The other 
17 rows show the knowledge states of the assumed 
knowledge structure (see also Figure 6) in binary fashion. 

In the output file (Figure 3) we can 
see the knowledge states in the assumed 
knowledge structure, the calculated 
probabilities of these knowledge states 
(‘Prob’), the predicted populations 
(‘Pred Pop’), the original populations 
(‘Pop’) and the χ2 value (‘Chi Sq’) for 
each knowledge state, and finally the 
total χ2 (‘ChiSqT’). This total χ2 together 
with the degrees of freedom characterise 
the degree to which the assumed 
knowledge structure fits to the original 
response structure. The degrees of 
freedom (d. f.) can be calculated as 
follows: d. f. = the number of knowledge 
states in the knowledge structure + the 
number of estimated parameters (lucky-
guess and careless error) – 1. The 
numbers appearing on the first column in 
the output file are the codes of the 
knowledge states in decimal system.  

In the output file (Figure 3) we can 
see the knowledge states in the assumed 
knowledge structure, the calculated 
probabilities of these knowledge states 
(‘Prob’), the predicted populations 
(‘Pred Pop’), the original populations 
(‘Pop’) and the χ

  

2 value (‘Chi Sq’) for 
each knowledge state, and finally the 
total χ2 (‘ChiSqT’). This total χ2 together 
with the degrees of freedom characterise 
the degree to which the assumed 
knowledge structure fits to the original 
response structure. The degrees of 
freedom (d. f.) can be calculated as 
follows: d. f. = the number of knowledge 
states in the knowledge structure + the 
number of estimated parameters (lucky-
guess and careless error) – 1. The 
numbers appearing on the first column in 
the output file are the codes of the 
knowledge states in decimal system.  

  
Figure 3. Output file in Potter’s program. Figure 3. Output file in Potter’s program. 

n=18   m=17   Population =65

Knol.st.            Prob    Pred Pop     Pop      Chi Sq
    0   000000    0.05818    3.78155        5    0.39259
   32   100000    0.04183    2.71923        2    0.19024
   16   010000    0.01338    0.86948        0    0.86948
    8   001000    0.01948    1.26642        0    1.26642
   48   110000    0.05516    3.58530        3    0.09555
   40   101000    0.09960    6.47404        7    0.04273
   24   011000    0.03282    2.13333        1    0.60208
   12   001100    0.01704    1.10774        1    0.01048
   56   111000    0.18165   11.80719       14    0.40724
   44   101100    0.03964    2.57690        1    0.96496
   28   011100    0.02768    1.79916        1    0.35497
   60   111100    0.13012    8.45779        9    0.03476
   58   111010    0.03729    2.42391        1    0.83647
   57   111001    0.05767    3.74863        3    0.14951
   62   111110    0.07376    4.79426        5    0.00883
   61   111101    0.06784    4.40966        4    0.03806
   63   111111    0.04685    3.04539        3    0.00068
ChisqT(17)= 6.265

n: number of initial response states (see also Figure 4);  n: number of initial response states (see also Figure 4);  
m: number of knowledge states in the assumed knowledge structure (see also Figure 6);  m: number of knowledge states in the assumed knowledge structure (see also Figure 6);  
1st column: code of the knowledge state in decimal system;  1
2nd column: code of the knowledge state in binary system;  2

st column: code of the knowledge state in decimal system;  

3rd column (‘Prob’): the probability of the population in the given response state;  3
nd column: code of the knowledge state in binary system;  

4th column (‘Pred Pop’): the predicted (calculated) population in the given response state;  4
rd column (‘Prob’): the probability of the population in the given response state;  

5th column (‘Pop’): the (initial) population in the given response state; 5
th column (‘Pred Pop’): the predicted (calculated) population in the given response state;  

6th column (‘Chi Sq’): χ2 calculated from the ‘Pop’ and ‘Pred Pop’ values; 6

th column (‘Pop’): the (initial) population in the given response state; 

ChisqT(17): the total value of χ2 in case of 17 assumed knowledge states. ChisqT(17): the total value of χ

th column (‘Chi Sq’): χ2 calculated from the ‘Pop’ and ‘Pred Pop’ values; 
2 in case of 17 assumed knowledge states. 
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The finding of the knowledge structure that fitted best to the response structure was a 
systematic trial-and-error process. We started with the most populated response states, then 
added and subtracted response states to minimise the χ2 values while forming an 
interconnected network where each state (except of 0 and Q) had a preceding state and a 
succeeding state (i.e. the structure was well graded). 

In determining the critical learning pathways we also used the Hexagon Data Analysis 
(hDA) from the lloydesign software developed the University of California at Irvine research 
group recently (Lloyd). In this method the original input data (response states) are converted 
into the empirical knowledge structure having all the possible response states with different 
predicted population. Starting from this empirical knowledge structure hDA gives the 
proposed knowledge structure and the top four pathways in a few minutes. 

 
Results and discussion 

 
Figure 4 shows the response structure of the students group (I), while Figure 5 represents 

that of the students group (II). According to the statistical analysis there is significant (p = 
0.0053) difference between the response structure of the two students groups.  

Figure 4. Response structure of student group (I). 

[Q]3

 
In th

answer f
only, and
4 and 5 
response
response
for respo
no succe
[1,2,3,4,5]5            [1,2,3,4,6]4            [2,3,4,5,6]1

[1,2,3,4]9         [1,2,3,5]1       [1,2,3,6]3       [1,3,4,5]1      [1,3,4,6]3

[1,2,3]14                  [1,3,4]1                  [2,3,4]1

[1,2]3                   [1,3]7                   [2,3]1                   [3,4]1

[1]2

[0]5

ese response structures, for example, [Q]3 means that only three students gave correct 
or all the questions, [1,2,3,4]9 means that 9 students could solve items 1, 2, 3, and 4 
 [0]5 means that there were five pupils who could not solve any items at all. Figures 
show that the response structures contain only 18 (group (I)), and 21 (group (II)) 
 states instead of the theoretically feasible 64 (26). These figures also show that 
 structures are not necessary well graded, for example there are no predecessor states 
nse states [2,3], [3,4], [2,3,4,5,6] (in Figure 4), [1,2,3,5,6] (in Figure 5), and there are 
ssor states for [1,3,5], [2,3,6], and [3,4,5] (in Figure 5). 
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Figure 5. Response structure of student group (II). 
 

 [Q] 7

[ 1 , 2 , 3 , 4 , 5 ] 1           [ 1 , 2 , 3 , 4 , 6 ] 7      [ 1 , 2 , 3 , 5 , 6 ] 1          [ 1 , 3 , 4 , 5 , 6 ] 2

   [ 1 , 2 , 3 , 4 ] 4                 [ 1 , 3 , 4 , 6 ] 2

[ 1 , 2 , 3 ] 1      [ 1 , 3 , 4 ] 8      [ 1 , 3 , 5 ] 1     [ 1 , 3 , 6 ] 1     [ 2 , 3 , 4 ] 1     [ 2 , 3 , 6 ] 1     [ 3 , 4 , 5 ] 1 

[ 1 , 3 ] 10           [ 2 , 3 ] 1          [ 3 , 4 ] 3          [ 3 , 5 ] 2

[ 3 ] 1                    [ 5 ] 1

  [0] 1  

 
Starting from these response structures, we recognised a subset of response states (the so-

called knowledge structure) fitted to the original response structure with at least p = 0.05 level 
of significance. To find the knowledge structure we used Potter’s software (Potter), and in 
fitting process we kept the following in view: (i) Lucky-guess and careless-error parameters 
(0.1 as usual) for each item were estimated. (ii) The knowledge structure has to be well 
graded (e. g. each knowledge state must have a predecessor state and a successor state except 
of the null state [0] and the final state with correct answers to all questions [Q]). The 
knowledge structures shown in Figures 6 and 7 fitted very well (>99.9%, p < 0.001) to the 
initial response structures. (The calculated ‘predicted population’ is signed as superscript next 
to the knowledge states, e. g. [2,3,4]1.799.)  It is seen from these pictures that the knowledge 

Figure 6. Knowledge structure of students group (I) (χ2 = 6,265; df = 28; p<0.001; >99.9%). 
Critical learning pathway is shown by bold lines. 

[Q]3..045

[1,2,3,4,5]4.794                      [1,2,3,4,6]4.410

[1,2,3,4]8.458               [1,2,3,5]2.424             [1,2,3,6]3.749

[1,2,3]11.81                  [1,3,4]2.577                  [2,3,4]1.799

[1,2]3.585                   [1,3]6.474                   [2,3]2.133                   [3,4]1.108

[1]2.719               [2]0.8695               [3]1.266

[0]3.782
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structure of the students in group (II) contains 28 knowledge states (Figure 7) and is more 
complicated than that of the students group (I) containing only 17 knowledge states (Figure 
6). This difference in the number of knowledge states in knowledge structure indicates that 
knowledge is less organised in case of the students of group (II) than that of the students of 
group (I).  

 
Figure 7. Knowledge structure of student group (II) (χ2 =13.34; df = 39; p <0.001; >99.9%). 

Critical learning pathway is shown by bold lines. 

5.892

 
Am

pathwa
was id
used o
critical
the res
pathwa
produc
percent
differen
percent
mass p
precede
from ea
pathwa
applyin
from th
‘proble
group (
[Q]

[1,2,3,4,5]1.784        [1,2,3,4,6]6.135       [2,3,4,5,6]0.6865

[1,2,3,4]4.459     [1,2,3,5]0.5477     [1,3,4,5]1.281     [2,3,4,5]0.4085     [2,3,4,6]0.8740

[1,2,3]2.096 [1,2,5]0.07045 [1,3,4]7.313 [1,3,5]1.820 [2,3,4]1.535 [2,3,5]0.3411 [3,4,5]1.258

[1,2]0.2425    [1,3]8.157    [1,5]0.2886    [2,3]1.219    [2,5]0.1243    [3,4]3.181    [3,5]1.880

[1]0..9927          [2]0.2219          [3]2.185          [5]0.9862

[0]1.020

ong the pathways from the null state [0] to the final state [Q] the most probable 
y (pathway containing knowledge states with the highest product of the populations) 
entified as the critical learning pathway characteristic of the students group. Note we 
ther three methods, too, for determining the critical learning pathway. Among the 
 learning pathways obtained from the different methods we selected the one that was 
ult of three or four of the methods used. Figure 8 shows these critical learning 
ys and the learning pathway suggested by the teaching sequence of these concepts and 
ed by the chemistry teachers. This expert’s (teachers’) pathway is: density → mass 
 → molar mass → molar volume → ‘exercise’ → ‘problem’. It is seen that main 
ces between these critical learning pathways are in the position of item 2 (mass 
) and item 3 (molar mass). Students learn molar mass after mastering in calculation of 
ercent (see expert’s pathway). However in the mind of 9th-10th graders molar mass 
s mass percent, and in the case of student group (II) these concepts are situated far 
ch other in the hierarchy. The inverse position of items 5 and 6 in the critical learning 
ys suggests that the students of the secondary school (I) are more familiar with 
g density when solving item 5 (‘problem’) than students from group (II). Students 
e school (II) were able to solve the ‘exercise’ type item more successfully than the 
m’ type item, just as the teachers, (experts) expected. It means that students in the 
II) tend to be algorithmic problem solvers in contrast to students from school (I).  
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Using a systematic trial and error process and χ2 
analysis, we determined the hierarchy of the 
concepts (items) characteristic of the cognitive 
organisation of the students’ knowledge (Figures 
9 and 10). We used Hasse diagrams (see for 
example: Albert and Held, 1994) for the 
representation of this hierarchy. Accordingly, 
hierarchy in Figure 9 means, for example, that 
the knowledge needed to answer item 3 correctly 
is essential knowledge for items 4, 5, and 6. 
Knowledge for item 6 is built on the knowledge 
needed to answer correctly items 2, 3 and 4, but 
it is independent of the knowledge for items 1 
and 5. To solve item 5 students have to have 
knowledge required for items 1, 3 and 4. 

Figure 8. Critical learning pathways for 
experts and for student groups (I) and (II). 

 
Experts

(1) → (2) → (3) → (4) → (6) → (5)

I)

(1) → (3) → (2) → (4) → (5) → (6)

II)

(3) → (1) → (4) → (2) → (6) → (5)
 

 

 

Figure 9. The best model for the organisation of knowledge in students’ minds in student group 
(I) (χ2 =6.423; df = 28; p <0.001; >99.9%). 

 
(6) (5)

(4)

(2) (3) (1)  
 
 

Figure 10. The best model for the organisation of knowledge in students’ minds in student 
group (II) (χ2 =13.34; df = 39; p <0.001; >99.9%). 

 
(6)

 (4)

(2)  (3) (1) (5)  

Figure 9 shows the model for describing the organisation of knowledge of the students’ of 
group (I). This model matches the experts’ model, and presents clear and logical connections 
between items. 

In contrast, the model obtained for the students’ of group (II) (Figure 10) shows a 
disconnected cognitive structure. In this model item 1 (density with mass and volume) and 
item 5 (density with molar mass and molar volume) are totally separated from each other, and 
item 5 is also separated from item 3 (molar mass) and item 4 (molar volume). The probable 
interpretation is – as seen from the written responses – that students of school (II) learned the 
concept density, molar mass, molar volume and mass percent mainly by rote, using 
mnemotechnics presented in Figure 11. However, they did not learn how density could be 
calculated from the molar mass and molar volume. Rote learning made it difficult for the 
students to find the connections between the concepts and to apply the learned concepts in 
solving a new problem.   
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Figure 11. Mnemotechnics used by students from school (II). 
 

 

m 

ρ    .  V 

m 
n    .  M 

V 
n   .    V m

 

 
It is interesting that every model in Figure 9 and 10 contains a hierarchical connection 

between items 3 and 4. This means that in students’ cognitive structure the concept of molar 
volume is built on the concept of molar mass. 

Figure 12. Distribution of students among the knowledge states in experts’ knowledge structure 
student group (I). 

[Q]5..00%

[1,2,3,4,5]7.87%          [1,2,3,4,6]7.24%

[1,2,3,4]13.89%        [1,3,4,5]2.30%        [2,3,4,6]1.09%

[1,2,3]19.39%          [1,3,4]4.23%          [2,3,4]2.96%

[1,2]5.89%        [1,3]10.63%      [2,3]3.50%      [3,4]1.82%

[1]4.47%          [2]1.43%          [3]2.08%

[0]6..21%

 
 
 

Figure 13. Distribution of students among the knowledge states in experts’ knowledge structure 
student group (II). 

[Q]12.13%

[1,2,3,4,5]3.67%          [1,2,3,4,6]12.63%

[1,2,3,4]9.18%        [1,3,4,5]2.64%        [2,3,4,6]1.80%

[1,2,3]4.31%          [1,3,4]15.05%          [2,3,4]3.16%

[1,2]0.50%        [1,3]16.79%      [2,3]2.51%      [3,4]6.55%

[1]2.04%          [2]0.46%          [3]4.50%

[0]2.10%
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Knowledge space theory can be applied not only for studying the knowledge structure of 
students groups, but also we can use it to optimise the teaching process. If we assume the 
hypothetical expert hierarchy of items is that shown in Figure 9, we can derive the 
hypothetical knowledge structure indicating the connections between the possible knowledge 
states (Figures 12 and 13).  

Based on the probabilities of the knowledge states in the hypothetical knowledge 
structure for each student group we can calculate what percentage of students (Table 1) are 
ready to learn the concept(s) regarding the given item. It is seen that the fitting of the 
hypothetical knowledge structure to the response structure is very good for each group. This 
analysis shows that most of the students (35.6%) in group (I) are ready to learn the concept of 
molar volume (item 4), while most of them (49.7%) in group (II) are ready to learn mass 
percent (item 2). This means that for students group (I) the molar volume, and for students 
group (II) the mass percent is the critical concept. Therefore instruction will be the most 
effective if the teachers discuss molar volume (with group I) and mass percent (with group II), 
at an early stage.  
Table 1. Fitting of experts’ knowledge structure to the response structure and percentages of students 
ready to learn the concepts linked to the given item. 

Students’ group Fitting Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 
(I) 99.9% 19.1 % 31.7 % 18.0 % 35.6 % 25.4 % 24.7 % 
(II) 99.3% 21.1 % 49.7 % 5.1 % 28.1 % 36.9 % 19.4 % 

 
Conclusions 

 
The results and conclusions of our study can be summarised as follows. 

1. We found significant difference in the characteristic knowledge structures of the student 
groups from different secondary high schools. The knowledge structure of the students of 
group (II) is more complex than that of the students of group (I), indicating a less 
organised knowledge in group (II).  

2. There are also differences between the two student groups and between experts and 
novices (students) in the critical learning pathway as the most probable order in learning 
concepts. Although Hungarian students learn molar mass after learning mass percent, in 
the students’ minds molar mass precedes mass percent. The reason for this change may be 
that Hungarian 9th and 10th graders use molar mass more frequently in chemical 
calculations than mass percent. The inverse position of ‘exercise’ and ‘problem’ type 
items suggests that students from secondary school (II) are more typically algorithmic 
problem solvers than students from secondary school (I). 

3. We could identify the characteristic hierarchies as the most probable models of 
knowledge structure. We found that in the model best fitted to the response structure of 
the students of group (II), density and the ‘problem’ type items are separated from each 
other and from the molar mass and molar volume. Only the connectivity between mass 
percent, molar mass, molar volume and ‘exercise’ type item exists according to the 
solution network given in item 6. Explanation of this cognitive structure containing 
separate concepts is given by the written responses of the students. Students from 
secondary school (II) learned density, molar mass, molar volume and mass percent 
mainly by rote-learning using mnemotechnics. Therefore, they were not able to apply 
these concepts in solving a ‘problem’ type question (item 5), but could use them in 
solving an ‘algorithmic’ type question (item 6).  

4. Alongside these differences, we could find some similarities between the two groups, as 
well. Models show that in students’ minds the concept of molar volume is built on the 
concept of molar mass. It is understandable, because molar mass is the first molar 
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quantity students learn, and molar mass is used more frequently in chemical calculations 
than molar volume. The connectivity between mass percent, molar mass, molar volume 
and “exercise” type item in the hierarchy of both groups indicates that students from both 
schools are able to solve the ‘exercise’ type questions more easily than the ‘problem’ type 
ones. 

5. Based on the hypothetical expert hierarchy we could select the critical items for both 
student groups. It was found that molar volume (in case of student group (I)) and mass 
percent (in case of student group (II)) were the critical concepts that most of the students 
were ready to learn.  
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Appendix - Questionnaire 
 
Fill in the empty boxes 
 
Item 1 

m = 24.0 g

V = 19.0 cm3

m = 16.0 g

d = 1.34 g/cm3

 
 
 
 
Item 2 
 

 

m soution .  = 500g 

c = 23.6 m/m% c = 54.9 m/m% 

m solute. = 79.6g 

 
 
 
 
Item 3 
 

m = 6.40 g O2

M = 32.0 g/mol M= 23.0 g/mol

n = 5.64 mol Na
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Item 4 
 

V = 34.6 dm3

Vm=24.5 dm3/mol

 
 
Item 5 
 

M = 71.0 g/mol

Vm= 22.4 dm3/mol

 
 
Item 6 
 
How many dm3 of HCl gas at STP must be dissolved in water to obtain 400 g of 38.0 m/m% 

hydrochloric acid? M(HCl) = 36.5 g/mol; Vm(HCl) = 24.5 dm3/mol 

msol. =
= 400 g

c =
= 38.0 m/m%

nHCl =
= 4.16 mol
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