Targeted Radionuclide Therapy: Practicalities and Potentials

Alan Perkins University of Nottingham Nottingham, UK

Radium Remedies

RADITHOR-PERPETUAL SUNSHINE

These Radium Rays

have proved highly valuable in the treatment of the following conditions:

> Anemia Arteriosclerosis Arthritis Catarrhal conditions Diabetes Dental conditions General debility Goitre High blood pressure Menopause and Menstrual disorders Nephritis Neuralgia Neurasthenia Neuritis Nervous conditions Obesity Prostatitis Rheumatism Senility Sexual conditions Skin disorders

- First developed in the 1950s
- Unique in nuclear medicine
- ¹³¹I-sodium iodide uptake by differentiated follicular thyroid cells

Proven efficacy, safety & cost Stands as a marker against which new forms of targeted therapy can be judged.

UK Liceneced Therapeutic Radiopharmaceuticals

- NaI
- MIBG
- Metastron
- Quadramet
- Zevalin

Global Perspective

 Different perception of value of nuclear medicine therapy.

- Vast discrepancy in resources between different countries.
- Difference in priorities between different countries.
- Complex relationships between practitioners,

researchers, industry and regulatory authorities.

Variable standards (efficacy/safety).

The promise of targeted molecular radiotherapy

The Bystander effect : Penetrating radiation minimises the problem of limited access in bulky or poorly vascularized tumours.

Choice of Radionuclide

Nuclide	T1/2	emission	mean path length			
I-125	60.0d	auger	→ 10nm			
At-211	7.2h	alpha	→ 65nm			
Lu-177	6.7d	beta/gamma	→ 0.7mm			
Cu-67	2.58d	beta/gamma	→ 0.7mm			
I-131	8.04d	beta/gamma	→ 0.9mm*			
Sm-153	1.95d	beta/gamma	→ 1.2mm			
Re-186	3.8d	beta/gamma	→ 1.8mm			
P-32	14.3d	beta .	2.9 mm			
Re-188	17h	beta/gamma	→ 3.5mm			
In-114m	50d	beta/gamma	> 3.6mm			
Y-90	2.67	beta	→ 3.9mm*			
*131 I> 3mm dia. 90 Y> 2cm dia.						

Notting Wheldon et. al. Radiother. Oncol. 1998

Rhenium-188

- Generator produced (¹⁸⁸W/¹⁸⁸Re generator).
- ¹⁸⁸Re obtained as sodium perrhenate.
- Carrier-free.
- Same periodic group as technetium therefore Tc & Re complexes have similar chemical properties.
- Re chemistry requires validation.

188W/188Re generator

Re-188 therapy conjugates

Re-188-antibody Re-188-lipodol for hepatoma Re-188-HEDP

Clinical

British Journal of Cancer (2003) 89, 625 629. doi:10.1038/sj.bjc.6601158 Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases

K Liepe1, J Kropp1, R Runge1 and J Kotzerke1 1Department of Nuclear Medicine, University Hospital Dresden, Fetscherstr. 74, 01307 Dresden, Germany

RHENIUM-188 ANTIBODIES FOR CANCER RADIOTMMUNOTHERAPY MARIO DE DECKER University of Groningen NL J HARVEY TURNER University of Western Australia

¹⁸⁸Re - RITUXIMAB ANTI CD 20

¹⁸⁸Re - BASILIXIMAB ANTI CD 25

¹⁸⁸Re - TRASTUZUMAB ANTI HER neu 2

188Re - CAMPATH ANTI CD 52

1. Metabolic process Targeting - Radioiodine - Radiophosphorus mechanisms

- Meta-iodobenzlguinadine

2. Extracellular mechanisms

- Bone seeking agents
- Radiolabelled cells

3. Cell surface receptors

- Hormones
- Peptides
- Antibodies
- **Aptamers**
- 4. Directed administration
 - Intralesional
 - Intra-arterial
 - Intracavitary

Molecular carriers?

Antibodies Peptides Aptamers

Nuclide I-125 At-211 Lu-177 Cu-67 I-131 Sm-153 Re-186 **P-32** In-114m Y-90

T_{1/2} emission 60.0d auger 7.2h alpha 6.7d beta/gamma 2.58d beta/gamma 8.04d beta/gamma 1.95d beta/gamma 3.8d beta/gamma 14.3d beta Re-188 17h beta/gamma beta/gamma 50d 2.67 beta

Table 1. New CD designations

CD designation	Name	Section	Locus link
CD15u	Sulphated CD15	Carbohydrate structures	
CD60a	GD3	Carbohydrate structures	
CD60b	9-O-acetyl-GD3	Carbohydrate structures	
CD60c	7-O-acetyl-GD3	Carbohydrate structures	
CD75	Lactosamines	Carbohydrate structures	
CD75s	Alpha-2,6-sialylated lactosamines		
	(formerly CDw75 and CDw76)	Carbohydrate structures	
CD85	ILT/LIR family (see Table 2)	Dendritic cells	
CD110	MPL, TPO R	Platelets	4352
CD111	PRR1/Nectin1	Myeloid cells	5818
CD112	PRR2	Myeloid cells	5819
CD133	AC133	Stem/progenitor cells	8842
CD156b	TACE/ADAM17	Adhesion structures	6868
CD158	KIR family (see Table 2)	NK cells	2021
CD159a	NKG2A	NK cells	3821
CD160	BY55	T cells NK cells	11126
CD162R	PEN5		6404 780
CD167a	Discoidin domain R (DDR1)	Adhesion structures	1.0.0
CD168	RHAMM	Adhesion structures	3161
CD169	Sialoadhesin	Adhesion structures	6614
CD170	Siglec-5	Adhesion structures	8778 3897
CD171	L1	Adhesion structures	
CD172a	SIRP alpha	Adhesion structures	8194
CD173	Blood group H type 2	Carbohydrate structures	
CD174 CD175	Lewis y	Carbohydrate structures	
CD175 CD175s	Tn Si lu Ta	Carbohydrate structures	
CD175s CD176	Sialyl-Tn TF	Carbohydrate structures Carbohydrate structures	
CD178 CD177	NB1		
CD177 CD178	Fas ligand	Myeloid cells Cytokine/chemokine receptors	356
CD178 CD179a	Vpre-B	B cells	7441
CD179b	Lambda 5	B cells	3543
CD1798 CD180	RP105	B cells	4064
CD183	CXCR3	Cytokine/chemokine receptors	2833
CD183 CD184	CXCR4	Cytokine/chemokine receptors	2855 7852
CD195	CCR5	Cytokine/chemokine receptors	1234
CDw197	CCR7	Cytokine/chemokine receptors	1234
CD200	OX2	Non-lineage molecules	4345
CD200	EPC R	Endothelial cells	10544
CD202b	Tie2 (Tek)	Endothelial cells	7010
CD2020	NPP3/PDNP3	Myeloid cells	5169
CD204	Macrophage scavenger R	Myeloid cells	4481
CD205	DEC205	Dendritic cells	4065
CD206	Macrophage mannose R	Dendritic cells	4360
CD207	Langerin	Dendritic cells	50489
CD208	DC-LAMP	Dendritic cells	20105
CD209	DC-SIGN	Dendritic cells	30385
CDw210	IL-10 R	Cytokine/chemokine receptors	3587; 3588
CD212	IL-12 R	Cytokine/chemokine receptors	3594
CD213a1	IL-13 R alpha 1	Cytokine/chemokine receptors	3597
CD213a2	IL-13 R alpha 2	Cytokine/chemokine receptors	3598
CDw217	IL-17 R	Cytokine/chemokine receptors	23765
CD220	Insulin R	Non-lineage molecules	3643
CD221	IGF1 R	Non-lineage molecules	3480
CD222	Mannose-6-phosphate/IGF2 R	Non-lineage molecules	3482
CD223	LAG-3	Non-lineage molecules	3902
CD224	Gamma-glutamyl transferase	Non-lineage molecules	2678
CD225	Leu13	Non-lineage molecules	8519
CD226	DNAM-1 (PTA1)	T cells	10666
CD227	MUC.1	Non-lineage molecules	4582
CD228	Melanotransferrin	Non-lineage molecules	4241
CD229	Ly9	Non-lineage molecules	4063

Antibody Structure and Function

Do antibodies work in vivo?

Imaging metastases

Patient with bone metastases from bladder cancer.

Gamma camera image of the lower legs, 5 hours following injection of Tc-99m-C595 anti MUC1 antibody.

AC Perkins QMC Nottingham

Antibody uptake in thrombus

Patient with arterial thrombus in the right femoral artery. Right: In-111-P256 Fab' platelet specific antibody showing focal uptake at 3 sites.

off: X roy contract anging rom confirming sites of thrombus in femoral artery

Left: X-ray contrast angiogram confirming sites of thrombus in femoral artery.

The university dains, QMC Nottingham

Haematological malignancy

P. W. M. Johnson

Cheson BD - J Clin Oncol 2001;19:3908-3911

OW, Rasey J. Semin Oncol 2000 ;27(6 Suppl 12):62-73.

Rationale for Radioimmunotherapy in NHL

NHL is inherently sensitive to radiation.

 Radiotherapy <u>can</u> be curative in early stage NHL but is less easily applied to advanced stage disease.

Synergistic activity between naked Mab and radionuclide.

Suitable for outpatient administration

The University of Nottingham

Bexxar - Iodine-131 Tositumomab

Tositumomab

- murine IgG2_a anti-CD20 MAb
- B-cell specific
- triggers apoptosis
- antibody-dependent cellular cytotoxicity

lodine-131

- gamma emission allows individual dosimetry
- restricts outpatient use.

Antibody Targeted Therapy Systemic administration Largely limited to diffuse refractory lymphomas Design of treatments can be improved Pretargeting strategies

Intracavitary administration Suitable for solid tumours Direct intralesional injection e.g.glioma IP administration for ovarian carcinoma Inravesical administration for superficial bladder cancer

Intravesical Therapy

Simple procedure

Well tolerated

No systemic effects

Can be easily repeated

Patient 10 (PK): 40MBq Re-188-C595

Large superficial TCC Tumour to normal tissue ratio = 79:1

What are aptamers ?

 Aptamers derived from the Greek word *aptus*, meaning "to fit"

 Aptamers are single or double stranded RNA or DNA oligonucleotide ligands selected for high affinity and the specific molecular fit with targets of interest.

Molecular size

Intact antibody Fab fragment Single chain fragment Aptamer Small peptide

150kDa 50kDa 27kDa 8-12kDa 0.5-2kDa

Aptamer production Systematic Evolution of Ligands by EXponential enrichment SELEX

- SELEX is a method of combinatorial chemistry employing libraries of nucleic acids for the recognition of a variety of biological and chemical targets
- It is a technology for the identification of high affinity and specificity oligonucleotide ligands (aptamers) based on consecutive rounds of selection and amplification

What is SELEX made of ? SELEX Libraries

- Libraries may be:
 - Synthetic oligonucleotides (ds or ss, RNA or DNA)
 - Digested genomic DNA
- Library size: ^{An} where n=number of degenerate bases, eg for an oligonucleotide with 25 degenerate bases: ⁴²⁵ = 10¹⁵ different ligands
 25 degenerate bases will allow formation of all common secondary structural motifs

Aptamer

Aptamers have proved to be highly selective high affinity-binding ligands

The binding characteristics of aptamers can be influenced by the experimental system used for their selection (modified bases, pH changes, or salt concentrations).

- Affinity of aptamers for:
 - Antibodies: Kd = 1nM
 - Growth Factors
 - Hormones
 - Enzymes
- Amino acids
 The University of

Kd = 0.2nM Kd = 60nM Kd = 10nM Kd = ~10nM

binding

Nottingham

• Cheap, efficient, reproducible and rapid production Stable: - long term storage - transportation in ambient temperatures Versatile and easy to modify • Small size - less immunogenicity, - good tumour penetration • Good as inhibitors, antagonists or regulators of pathways (VEGF, NX1838) Carrier/reporter molecules (Fluorophores, radionuclides etc) Excellent molecular probes and sensor recognition units

Applications

- DNA ligands as inhibitors or antagonists
- Diagnostic assays
- Sensors (biosensors/chemosensors)
- Targeted therapeutics :
 - Delivery system for non-specific inhibitors
 - Drug attached to aptamer
 - Radionuclide attached to aptamer

MacugenTM

- The first pharmaceutical aptamer formulation, Macugen[®] (pegaptanib sodium injection) was approved in the United States in 2004.
- Anti-VEGF aptamer formulation.
- Used for the treatment of Neovascular age-related macular degeneration.
- Pegaptanib sodium is a covalent conjugate of twentyeight nucleotides in length terminating in a pentylamino linker, to which polyethylene glycol (PEG) is attached via the two amino groups on a lysine residue.
- It is formulated as a sterile, aqueous solution for intravitreous injection.

MacugenTM Mode of action

intravitreous injection

Macugen Injection estien.com Leaking . blood vessel

Aptamers as imaging agents

1. Thrombus

Dougan et. al. Evaluation of DNA aptamers directed to thrombin as potential thrombus imaging agents. Nuclear Medicine and Biology 2003; 30:61-72.

2. Inflammation

Charlton et. al. In vivo imaging of inflammation using an apatamer inhibitor of human neutrophilo elastase. Chem Biol 1997;4:809-816.

3. Alzheimer's Disease

Ylera et. al. Selection of RNA aptamers to the Alzheimer's disease amyloid peptide. Biochemical and Biophysical Research Communications 2002; 290:1583-1588.

Nottinghan

Hicke et. al. Tumour targeting by an aptamer. J. Nucl. Med. 2006;47:668-678.

 In 2000 Hicke and Stephens used the term "escort aptamers" indicating that aptamers offered a delivery service for diagnosis and therapy.

- Aptamer (TTA1) produced against extracellular matrix protein Tenascin-C.
- Radiolabelled with ^{99m}Tc using mercapto-acetyl glycene (MAG₂) and DTPA.
 - Biodistribution studies were undertaken in nude mice bearing either U251 glioblastoma or MDA-MB-435 breast tumour xenografts.

Hicke et. al. JNM. 2006;47:668.

Tc-99m-TTA1 aptamer directed against Tenascin-C

U251 glioblastoma xenografts

Selected aptamers against MUC1

MCF-7 tumour imaging

Poor tumour visualisation due to high amount of activity in the kidneys and bladder resulting from the rapid clearance of the aptamers due to their small size.

Electronic autoradiography

MCF-7 Tumour Slides

Imaging of tumour slides in a microchannel plate detector

The University of Penetration of aptamers Superior to Mab !

Tumor Therapy with Targeted Atomic Nanogenerators

Michael R. McDevitt,¹ Dangshe Ma,¹ Lawrence T. Lai,¹ Jim Simon,² Paul Borchardt,¹ R. Keith Frank,² Karen Wu,¹ Virginia Pellegrini,¹ Michael J. Curcio,¹ Matthias Miederer,¹ Neil H. Bander,³ David A. Scheinberg^{1*}

A single, high linear energy transfer alpha particle can kill a target cell. We have developed methods to target molecular-sized generators of alpha-emitting isotope cascades to the inside of cancer cells using actinium-225 coupled to internalizing monoclonal antibodies. In vitro, these constructs specifically killed leukemia, lymphoma, breast, ovarian, neuroblastoma, and prostate cancer cells at becquerel (picocurie) levels. Injection of single doses of the constructs at kilobecquerel (nanocurie) levels into mice bearing solid prostate carcinoma or disseminated human lymphoma induced tumor regression and prolonged survival, without toxicity, in a substantial fraction of animals. Nanogenerators targeting a wide variety of cancers may be possible.

SCIENCE VOL 294 16 NOVEMBER 2001

Merits of and radiation

- The mass is 7000 x that of (4 mass units versus 1/1800)
- The 's energy is 30 x that of (typically 6 MeV versus 200 keV)
- The electric charge is double (+2 versus -1)
- LET ~100 times greater (range 50-90 m)
 Typically 0.25Gy in 10 m cell diameter
 The effective range of particles in tissue is approx 5 cell diameters compared with hundreds/thousands for particles.

Some -emitting radionuclides of interest to nuclear medicine

Radionuclide T_{1/2} energy (MeV) Range (m)

¹⁴⁹ Tb	4h	3.97	26
²¹¹ At	7.21h	6	65
²¹² Bi	1h	8.79	87
		6.0	65
²¹³ Bi	45.6min	8.4	80
		5.9	58
²²⁵ Ac	10d	6.0	65
		7.0	75
		8.4	85
The University of Nottingham		5.9	58

Radium-223 treatment of skeletal metastases

Cations of the heavy alkaline earth elements naturally seek bone !

> ²²³Ra (, $T_{1/2} = 11.4d$) -->²¹⁹Ra (, $T_{1/2} = 3.96s$) --> ²¹⁵Po (, $T_{1/2} = 1.78ms$) -->²¹¹Pb (, $T_{1/2} = 36.1m$) --> ²¹¹Bi (, $T_{1/2} = 2.17min$) --> ²⁰⁷Tl (, $T_{1/2} = 4.77min$) --> ²⁰⁷Pb (stable)

Alpharadin[™] Algeta, Oslo

Preclinical studies employing ²²³Ra (T_{1/2} = 11.4 d) in a skeletal metastases model of human breast cancer revealed a strong affinity for the skeleton and demonstrated significant anti-tumor activity. *Henriksen et al. J Nucl Med 2003 Feb;44(2):252-9.*

Phase I clinical trial in patients with skeletal metastases from breast and prostate cancer. Dose range 46-250kBq/kg *Nilsson et al. Clin Cancer Res 2005:11;4451-4459*

Algeta is conducting trial BC1-02 as part of its Phase II clinical trial of Alpharadin(TM), a novel radiopharmaceutical based on the alpha particle emitter radium-223, which naturally targets and attacks skeletal metastases. The double-blind placebo-controlled trial involves 64 patientswith painful skeletal metastases as a consequence of HRPC and is in its follow-up phase at 11 centers in Norway, Sweden and the UK. The trial wasfully enrolled in May 2005 Algeta believes that Alpharadin may offer an anti-tumor effect and significant advantages over existing palliative treatments, improving life expectancy and quality of life based on the following key properties: Demonstrated anti-tumor effects Minimal side-effects Ready-to-use formulation of radium-223 chloride Administered on out-patient basis Intrinsic targeting of skeletal tissues Selective accumulation in skeletal metastases Optimal half-life of 11.4 days Photo emission enables concurrent imaging Safe and easy produce, delivery, handling and disposal The University of Nottingham

Practicalities of targeted therapy

Radiopharmaceutical Laboratory

Sterile pharmaceutical production area

Radiation laboratory

Regulatory certificates and licences e.g.UK MHRA Environment Agency Heath and Safety Dept of Health.

Radiation Protection Standards

Registration and Authorisation Certificates Local rules dated and reviewed Warning signs for Controlled/Supervised areas Staff monitoring Appropriate use of shielding Calibration of contamination monitors Storage of radioactive materials Disposal of radioactive waste Safe to clean/permit to work Radiation audit

References

- 1. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Safety series 117 IAEA Vienna 1996.
- 2. Applying radiation safety standards in nuclear medicine. Safety reports series 40 IAEA Vienna 2005.
- 3. Nuclear Medicine Resources Manual. IAEA Vienna 2006.
- ICRP Publication 94: Release of Patients after Therapy with Unsealed Radionuclides. International Commission on Radiological Protection ISBN 0080445608 2005
- 5. Medical and dental guidance notes. IPEM York 2002

Therapeutic radiopharmaceuticals

- Dispensed in the radiopharmacy as sterile products.
- Use licensed products when possible.
- Written procedures for all preparations.
- Batch manufacturing records, lot No, staff names etc.
- QC and sterility tests
 - **Essential for therapeutics**
 - (some tests may be retrospective)
- Adverse reactions reported.

Administration to patients

Checklist

1. Full patient history including home circumstances 2. Patient identification Name / d.o.b. / address 3. Any patient questions ? 4. Check radiopharmaceutical, Radionuclide & chemical form. 5. Amount of radioactivity prescribed for the procedure. Administration set Gloves and syringe shield. 6. Route and speed of injection. 7. Flushing of the line.

Breast feeding patients

(Physical and chemical characteristics of emitted radiation)

Interrupt breast feeding and monitor activity in milk.

(*Pharmacokinetics and excretory path of radiopharmaceutical*) Obtain advice from:

Publications and Notes for Guidance. (*For table of excretion data see J Nucl Med 2000;41:863-873*) Nuclear Medicine Department. RPA/MPE.

