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There is now abundant evidence that we analytical chemists are

tending to underestimate the uncertainty of our measurements.

There are two main underlying reasons for this. One reason is

technical: it is easy to overlook important contributions to uncer-

tainty, so the models used to estimate uncertainty may be incom-

plete. The second reason may be psychological: there may be an

unconscious selection bias in the information we use to assess

uncertainty. What should we do about this missing, ‘dark’,

uncertainty?
A recent meta-analysis1 has reviewed available studies of repor-

ted uncertainties in inter-laboratory exercises and examined

additional examples of metrology comparisons in analytical

chemistry. Although the number of such studies is modest, all

those reviewed show evidence that uncertainty is more often

underestimated than overestimated – that is, differences among

laboratories are usually greater than the reported uncertainties
Fig. 1 Ordered results for Pb in tuna (mg kg�1), with reported expanded

uncertainties (vertical lines), from laboratories participating in IMEP20.

Redrawn with permission from data published by IRMM.
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would suggest. As an example of this common occurrence, Fig. 1

shows the results, with their reported uncertainties, for lead in

tuna, produced by participants in IMEP 20. (IMEP is the

International Measurement Evaluation Programme organised

by the European Institute for Reference Materials and

Measurements (IRMM), Geel, Belgium). Fig. 2 shows the

observed distribution of the sorted results, together with boot-

strapped estimates of the expected distribution had the uncer-

tainty estimates been correct. On the basis of the reported

uncertainties, the between-laboratory standard deviation should

be 0.031 ppm: the observed robust value (that is, outliers dis-

counted) was 0.122 ppm.

This kind of occurrence is neither especially novel nor peculiar to

analytical chemistry, as we can see from the classic 1972 paper by

Youden2 on estimates of the velocity of light. But why now, two

decades after the publication of the Guide to the Expression of

Uncertainty inmeasurement (‘‘theGUM’’),3 should this still happen?
GUM

The GUM provided three things. First, it provided some basic

concepts, such as the concept of measurement uncertainty itself

as a summary figure that includes all possible effects, random

or systematic, on a result. Second, it provided a set of princi-

ples for estimating uncertainty: the idea that uncertainty arises

from multiple sources; that for combination, uncertainties

should all be expressed in the form of standard deviations; that
Anal. Methods
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Fig. 2 Distribution of ordered reported results for Pb in tuna (mg kg�1)

(black line) and bootstrapped expected distributions (red lines) based on

the reported uncertainties (same data as Fig. 1). The width of the bundle

of red lines gives an idea of the uncertainty of the position of the expected

distribution.
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these ‘standard uncertainties’ should be combined using the

established rules for combining variances; and the then quite

radical idea that uncertainties for both random and systematic

effects should be treated identically, no matter whether they

were estimated from statistical analysis (‘‘Type A’’) or from

other sources (‘‘Type B’’) such as calibration certificates,

manufacturer specifications or professional judgement. Finally,

the GUM provided a particular approach to the combination

of uncertainties, based on an equation (the ‘measurement

model’) that was assumed to include all known significant

effects on the measurement result. This particular methodology

has been described as the ‘bottom up’ approach because of its

focus on building up an uncertainty budget from individual

parts.
Building on GUM

Since the publication of the GUM, other approaches have

become available that respect the same principles but use alter-

native combination methods or simpler models. In particular, the

second edition of the Eurachem Guide4 described a general

approach using available data, including the use of in-house

validation data or inter-laboratory reproducibility data as well as

allowing the ‘bottom up’ approach, to evaluate uncertainty. This

guide uses a combination of cause and effect analysis and a

‘reconciliation’ step to assess whether the data available are

sufficient. A recent ISO Standard, ISO 21748,5 gives more detail

for the use of reproducibility data, based on a simplified model

equation. Approaches based on method performance data are

often called ‘top down’ approaches in contrast to the reductionist

‘bottom up’ approach above. A Eurolab guide and a NordTest

guide have also added some approaches for the use of proficiency

testing data.6,7 Following these guides should provide analysts

with comprehensive, and sometimes conservative (that is, large),

estimates of uncertainty. Yet the evidence is that many, if not

most, laboratories still underestimate uncertainties. So where

should we look for ‘missing’ uncertainty? And what can we do

about it?
Anal. Methods
‘Cause and effect’ analysis

Cause and effect analysis is used to identify possible sources of

uncertainty. It is usually documented in the form of an Ishi-

kawa or ‘fishbone’ diagram, showing the different factors

affecting the result. The Eurachem guide suggests that the

process begin with the parameters in the equation used to

calculate the measurement result. It then suggests examining

each of these to identify operations or other input quantities

that can affect the measurement result. As an example, consider

the example of a simple pesticide residue analysis of a foodstuff

measured by single-point calibration. We weigh the foodstuff to

give a mass m. We extract the foodstuff with an organic

solvent, clean up with, for example, solid phase extraction, and

make up the resulting extract to a volume v. We make up a

standard solution of known concentration c. Then we use

chromatography to determine peak intensities Ix and Istd for the

test material extract and standard solution respectively, and

calculate the mass fraction x of pesticide in the original food-

stuff using

x ¼ Ix

Istd

cv

m

From the simple equation above, the initial components of

uncertainty might stem from:

� The concentration c of the analyte in the calibrators;

� The volume v of the extract.

� The peak area ratio.

� The mass of sample taken for analysis.

These primary contributions can be further broken down into

secondary contributions. For example, the concentration of

analyte in the calibrator would be affected by:

� Uncertainty in the purity of the chemical standard;

� Gravimetric and volumetric uncertainties.

The process is continued until the scientist is convinced

that all relevant effects are included. For example, the

volumes will be affected by precision, calibration and, for

completeness, temperature effects. The Eurachem guide

suggests further refinement of the diagram to resolve any

apparent duplication and to group related effects. Often,

consideration of the analytical process identifies new factors

(such as extraction efficiency) which lead to additional

‘branches’ in the diagram.

In principle, each item in the diagram is a possible contri-

bution to uncertainty and a standard uncertainty allocated to

each. This corresponds exactly to the detailed GUM approach.

However, the Eurachem guide indicates that is often possible

to assess the uncertainty for groups of related effects. For

example, a good estimate of long term precision includes

variation from a large number of effects, particularly random

effects, and can reduce or eliminate the need for individual

assessment of many terms. In particular, inter-laboratory

reproducibility conditions allow variation (within permitted

ranges) of nearly all effects on the result; the Eurachem guide

therefore suggests that the reproducibility standard deviation is

a good basis for an initial estimate of uncertainty (although it

does add that an inter-laboratory study does not include all

effects, particularly parts of sample preparation). This implies

a range of possible approaches, from detailed assessment of
This journal is ª The Royal Society of Chemistry 2012
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every individual contribution through to the use of a much

simpler (if less informative) summary figure of performance.

And indeed both approaches are widely used in practice. But

does either of these extremes guarantee an accurately

estimated uncertainty?

Two schools of thought

The measurement community often seems polarised towards one

or other of two extreme points of view.

� The ‘bottom-uppers’ or ‘splitters’ believe that the decon-

struction procedure should be exhaustive, continued to provide a

complicated complete ‘model’ of the procedure. ‘Splitters’ assert

(correctly in most instances) that reproducibility standard devi-

ation tends to underestimate standard uncertainty because inter

alia the effects of method bias are not accounted for. The issue of

traceability is also raised: how is the outcome traceable to the SI?

� The ‘top-downers’ or ‘lumpers’ believe that deconstruction

should be terminated at the earliest possible point that gives rise

to a reasonable estimate of uncertainty. The extreme version of

the ‘lumper’ approach is simply to use reproducibility standard

deviation (obtained by replication of the entire procedure in

different laboratories) as their estimate of standard uncertainty.

‘Lumpers’ take the view (again correctly in most instances) that

analytical procedures involve chemical interactions so numerous

and complex that it is usually impossible to build a comprehen-

sive model. There are both hidden influences on the result and

unknown interactions between overt influences. The outcome is

‘dark uncertainty’,1 present in the result of the measurement but

not visible in the uncertainty budget. However, all of the effects,

known and unknown (but excluding method bias), will be taken

into account in reproducibility precision, because each labora-

tory using the procedure will explore the variable space differ-

ently and more-or-less at random. Because of this, dark

uncertainty will be manifest in the reproducibility standard

deviation, even though we do not know its source.

Advocates of both of these views, then, claim that the alter-

native method tends to under-estimate uncertainty. But these

contentions are open to testing. A recent study of chemical

measurement8 has found a strong tendency for reproducibility

standard deviation to be greater than an estimate based on a

splitter approach, by a factor of about 1.5–2. And reproducibility

standard deviation itself is potentially too small: it does not

account for method bias. Dark uncertainty seems to be not only

ubiquitous but almost inevitable in chemical measurement. So

what should the analyst do?
Checking the reliability of uncertainty estimates

An obvious place to start is to check whether uncertainty esti-

mates are realistic. This is covered in another AMC Brief,9 so we

will not discuss it in detail here. But as a simple rule of thumb, an
This journal is ª The Royal Society of Chemistry 2012
uncertainty estimate much better than typical reproducibility

standard deviations sR found for relevant methods and test

materials shouldbe reviewedas suspect.Where no relevant studies

are available, relevant guidance (often regulatory) on acceptable

performance may be a useful guide. And in the food analysis

sector, Horwitz’s compilations have demonstrated a strong

general tendency for reproducibility standard deviation to be

about twice the associated repeatability standard deviation sr
(that is, sR z 2sr) so a general tendency for uncertainty estimates

in a laboratory to be less than 2sr should be regarded as suspect.

Where we should look, once we have identified a potential

problem, depends on the approach we have taken for our uncer-

tainty estimate. TheGUMassumes that we have an equation that

describes, quantitatively, all known, significant effects on the

result. This is one obvious place to look for missing uncertainties.
‘Bottom-up’ analysis from the model equation

In principle, we can apply the GUM approach to the equation in

the pesticide example above. A cursory examination might

suggest that chromatographic peak areas can be estimated with a

(relative) standard uncertainty of about 1%, that masses and

volumes can be determined with uncertainty near 0.1% and that

the stock solution uncertainty (which depends on further

weighings and volumetric operations) could be known with

relative uncertainty well under 1%. Combining these in the usual

way gives a relative standard uncertainty of the order of 1.5–2%.

We might see a repeatability relative standard deviation of 5–

15% on spiked test materials, so the estimated relative uncer-

tainty could be, perhaps, 10%.

This may be a fair summary of the combination of known

calibration uncertainties and observed repeatability – and indeed

confirms very nicely that we need take no further care over our

instrument and glassware calibrations, which are contributing

very little to the uncertainty. But it will not take a working

analyst long to work out that the model used is woefully

incomplete. Organic trace analysis is critically dependent on

efficient extraction and minimal loss.

Shortcomings can cause very large biases – but neither appears

in the ‘model’ above. Nor is it simple to incorporate them;

although we can easily add a nominal ‘recovery correction’ factor

to the above model, with a large uncertainty, we still need to

characterise that uncertainty. In practice we can rarely charac-

terise extraction processes sufficiently well for a given test mate-

rial, and losses from oxidation, evaporation, SPE cartridge

retention, and photochemical and chemical degradation are very

hard to characterise in any quantitative way.

This, then, is one place to look for missing uncertainties. The

principal weakness of the ‘bottom up’ approach for routine testing

is that the largest effects are often too poorly characterised to

include inaquantitativemodel, andcanatbest be limitedbycareful

procedure. A slightly more subtle problem is that no model can

include effects the scientist is not yet aware of, making extensive

experience and training very important if this approach is used.
‘‘Top-down’’ analysis

Top-down estimates of uncertainty use method performance

data; typically an estimate of precision, an estimate of bias plus
Anal. Methods
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perhaps some additional allowances. The critical questions

are then ‘‘which estimate of precision?’’ and ‘‘of which

measurement?’’

Precision can be estimated from any set of repeated observa-

tions, from re-presentation of an extract to an instrument, through

repetition of the complete measurement with no changes in cali-

brations, operator or equipment, to repetition by different labo-

ratories. But the estimates of precision we get under these different

conditions are very different, and we need to choose the right one.

In one study of uncertainties reported in proficiency tests, it was

found that those laboratories using repeatability standard devia-

tion as the basis for their reported uncertainty were by far themost

likely to show errors much larger than their reported uncertainty

would suggest.8Repeatability standard deviations do not tease out

all the hidden, and often large, effects. The lesson is clear: repeat-

ability standard deviations alone are insufficient for measurement

uncertainty estimation andwemust use conditions that encompass

as large a range of effects as possible.

Bias estimates used for uncertainty estimation have been less

studied. However, we do know that if we measure recovery on a

single simple material, we are likely to get rather more favourable

answers than by looking at a range of different matrices, and

while a poor spike recovery is a reliable sign of a problem, a good

spike recovery could simply reflect insufficient equilibration or a

less strongly bound material, yet another hidden uncertainty. We

must choose our bias studies from the hard cases as well as the

easy cases to get realistic uncertainty estimates.
This Technical Brief was drafted for the AMC by M Thompson

and S L R Ellison.
Selection bias and fitness for purpose

A contribution to underestimation of uncertainty is our tendency

to use specially prepared test materials for estimating precision.

This can give rise to an underestimated precision and a

comfortable feeling that the method is more accurate than it

actually is. Often the materials used in estimating precision are

finely ground and well-mixed control materials, or even certified

reference materials. Such materials can give rise to better preci-

sion estimates than achieved with routine test materials, by virtue

of being closer to homogeneity and therefore more effectively

decomposed by the chemical operations preceding instrumental

measurement. That is a reasonable strategy for studying the

method per se. But in uncertainty estimation we should not be

interested in the method per se but in the performance of the

whole analytical system, the combination of the method and the

laboratory samples prepared in the routine way. We should use

for that purpose test materials that are typical of those encoun-

tered under conditions of routine analysis.

The subconscious tendency to prefer results that look good is

natural enough, but is partly founded on a ‘target culture’ derived

from training. Our early attempts at chemical analysis are unskilful

andweare trained todevelop skill by trying for the smallest possible

uncertainty. This strategy is sensible as far as it goes, but has an

unfortunate side effect. We are led to feel uncomfortable if we do
Anal. Methods
not achieve this low uncertainty. But ultimately we need judgement

as well as skill. Fitness for purpose demands an uncertainty that is

optimal for the customer in terms of overall cost, not the smallest

possible. The overall cost is the cost of themeasurement per se, plus

the cost of a mistaken decision based on the result (and its proba-

bility). Lower uncertainty means a higher measurement cost but a

lower chance of a mistake. We have to achieve the best balance

between these costs. There should be no comfort in demonstrating

the achievement of an unnecessarily small uncertainty.

There is also the commercial aspect: we may be worried about

offering an optimal uncertainty in case our competitors are

offeringanunnecessarily (andoftenunrealistically) small one.This

is a serious problem: customers simply complyingwith an item in a

quality manual will tend to select price-for-price the laboratory

that seems to offer the lowest uncertainty. The problem can be

alleviated only by educationof the customer, a formidable task but

one that should be attempted as part of an analyst’s professional

activities. As well as explaining the causes and outcomes of unre-

alistically small uncertainty estimates, laboratories tendering for

contracts should strongly encourage potential customers (i) to

require uncertainty specifications from all their competitors and

(ii) to apply quality control measures on the contracted-out anal-

ysis to ensure that the specification is being met.
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