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Is my calibration linear? 
 
Examining a calibration function for linearity is an 
everyday task in both validating analytical methods 
and routine analytical operations. Linearity is an 
important and desirable feature of an analytical 
method. For example, if a calibration function is 
linear, then it is easier to estimate the equation, and 
evaluation errors (errors in estimating unknown 
concentrations from the calibration function) are 
likely to be smaller. Moreover, the assumption of 
calibration linearity is implicit for the valid use of 
the method of standard additions. Given the 
importance of linear calibration, it is strange that 
most analytical chemists are willing to use the 
correlation coefficient as an indicator of linearity. 
 
Properties of the correlation coefficient 
The correlation coefficient r, given by  
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is a measure of relationship between two variables x 
and y. It has several valuable properties. Its use in 
calibration, however, is based on a widespread 
misunderstanding. Certainly it is true that, if the 
calibration points are tightly clustered around a straight 
line, the experimental value of r will be close to unity 
(Figure1, Dataset A).  

 
Figure 1. Calibration (arbitrary units) with points clustered round a 
true straight line, with r = 0.99 (Dataset A). 
 
But the converse is not true. A value of r close to unity 
is not necessarily the outcome of a linear relationship 
but could, for example, result from points clustered 
around a readily visible curve (Figure 2, Dataset B). 
There is a related problem: values of r cannot properly 
be compared. We cannot say validly that a data set 
with r = 0.99 is ‘more linear’ than one with r = 0.95. 
The same problems affect the use of the R2 statistic 
produced by regression software. 

 
Figure 2. Calibration (arbitrary units) with points clustered round a 
true curve, again with r = 0.99 (Dataset B). 
 
Of course, it’s all a matter of degree. A calibration with 

9999.0=r would necessarily be close to a straight line. 
The problem is that we cannot say how close, or 
whether it’s close enough. 
 
Testing for lack of fit 
Strictly speaking, we cannot test for linearity as such. 
The best that we can achieve is to show that a 
deviation from linearity is too small to detect given our 
results, that is, it’s not statistically significant. One 
approach along these lines is to examine the residuals 
from a linear regression. (That is a good thing to do 
anyway.)  
 
The residuals are the distances of the experimental 
points from the fitted regression line, measured in a 
direction parallel to the response axis. If there is no 
lack of fit, (that is, the calibration is inherently linear) 
the residuals plotted against concentration will look 
like a random sample from a normal distribution with 
zero mean. As an example, residuals from Dataset A 
are plotted against concentration in Figure 3 (overleaf). 
 
If there is non-linearity, however, a pattern should be 
discernible in the residual plot, typically a bow shaped 
trend in the points (Figure 4, Dataset B). But how can 
we tell if an apparent pattern is significant?  That can 
be achieved by replicating the measurements at each 
calibration point. This gives us information about the 
inherent variability of the response measurements 
(called the ‘pure error’). So we could see in Figure 4, 
for example, that the systematic deviation of the 
residuals from zero was reasonably large in relation to 
the differences between the duplicated measurements, 
and therefore probably statistically significant. 
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Figure 3. Standardised residuals from linear regression using Dataset 
A. There is no convincing pattern in the residuals. 

 
Figure 4. Standardised residuals from linear regression using Dataset 
B. A clear trend (dashed line) is apparent. 
 
In cases of doubt, a statistical test (analysis of the 
variance of the residuals into lack of fit and pure error) 
can be applied to the data as part of the regression. If 
there is significant lack of fit, and the pattern of the 
residuals supports such an interpretation, we have 
demonstrated significant non-linearity in an 
unequivocal manner. (Given the data in Figure 4, the 
statistic shows that there is significant lack of fit, with 
p ≈ 0.01.) If there is evidence of uneven variance in 
response, which is common in long range calibration, 
weighted regression should be used for the best results. 
 
All of these statistical tests (including the production of 
residual plots) can be easily carried out in standard 
statistical software packages.  
 
Good design 
Of course, the calibration experiment needs to be well 
designed. An effective design is to use six or more 
concentrations of the analyte, equally spaced across the 
concentration range of interest, and to measure each 
one twice, but with the measurements executed in a 
random order. The rationale for these measures is 
straight-forward: (a) there must be enough calibration 
points to make a pattern discernible—it’s difficult to be 
exact here but six seems to be a practical minimum; (b) 
randomising the order of the measurements avoids the 
problem of confusing non-linearity with temporal 
effects such as instrumental drift occurring during the 
calibration. 
 

Exact linearity? 
As a final thought, we can ask whether we really 
require exact linearity. We could accept a deviation 
from linearity if, for example, the evaluation 
uncertainty resulting from the use of a linear 
calibration function made an insignificant contribution 
to the overall uncertainty of the measurement result, 
and that is often the case. However, we have to 
consider which part of the calibration is relevant to our 
needs. 

 
Figure 5. Part of calibration graph magnified (Figure 2, Dataset B), 
showing bias at low concentrations between the true relationship 
(solid line) and the linear regression (dashed line). 
 
Near the bottom of the concentration range, the use of 
a linear relationship to represent a truly curved 
calibration function might result in lack of fit that may 
produce seriously misleading results. Figure 5 shows 
the outcome for Dataset B. Low concentrations of 
analyte could be subject to a relatively large systematic 
error. 
 
Recommendation 
The correlation coefficient in the context of 
linearity testing is potentially misleading, and 
should be avoided. Testing for lack of fit by 
examining the residuals after linear regression is 
statistically sound and easily executed. 
 
Further reading 
AMC, Uses (Proper and Improper) of Correlation 
Coefficients, Analyst, 1988, 113, 1469. 
AMC, Is My Calibration Linear? Analyst, 1994, 119, 
2363. 
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