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A simple fitness-for-purpose control chart based on duplicate
results obtained from routine test materials

There is a simple graphical method for assessing and
controlling repeatability precision from a moderate
number of duplicated analytical results.  The data are
obtained from test materials (as opposed to control
materials), and the chart differs from the classical
control chart because it depends on an independent
fitness-for-purpose criterion. This ‘Thompson-
Howarth duplicate chart’1 has been in use for many
years in the geo-analytical community, but is quite
general in  its applicability. The method allows for
the fact that analytical precision varies with the
concentration of the analyte. It has been found to be
especially helpful in situations where statistical
control cannot be assumed, for example, in ‘ad-hoc’
analysis or when a well-established method is used
infrequently.

Statistical control and fitness for purpose
The classical Shewhart control chart, as used by analysts
for internal quality control (IQC),2 is based on the idea
of statistical control, that is, that errors in successive
runs of an analytical system can be described adequately
by a given normal distribution. Often, however, we
cannot use the idea of statistical control, because the
analysis being undertaken is unique or attempted only
infrequently. In such instances, however,  we still need
some kind of IQC, to ensure that the uncertainty of the
measurement falls within bounds defined by fitness for
purpose (FFP).

Regardless of whether or not statistical control is
applicable, it is possible to compare the closeness of
duplicated analyses with a specification prescribed by a
predetermined FFP criterion. If we wish to assess
repeatability precision, we can simply conduct duplicate
analyses on some or all of the test materials within a run.
The results obtained by analysing many different, but
typical, materials in duplicate in a random sequence are
indeed more representative of the precision
characteristics of the analytical system than results from
one or two control materials with a greater number of
replications. Many analysts conduct duplicate analyses
as a matter of routine, and in such circumstances, no
extra effort is required.

Rationale of the T-H chart
Supposing that fitness for purpose requires the analytical
system to provide results with a repeatability standard

deviation of σ r  .  The difference d x x= −1 2 between

two duplicated measurements ( x x1 2, ) should have a

standard deviation of σ σd r= 2 . Under the

assumption of the normal distribution, we can define
various bounds for d , the absolute difference between

x1 and x2 . For example, we would expect on average

half of the absolute differences to fall above the 50th

percentile, given by

P r r50 0 6745 2 0 954= × =. .σ σ

and 5% of them to fall above

 P r r95 1 960 2 2 772= × =. .σ σ

The multipliers of σ r , used for calculating the bounds,

are derived from the normal distribution: a useful
selection is given below.

Percentile Factor
50th 0.954
90th 2.326
95th 2.772
99th 3.643

99.9th 4.654

If the performance of the analytical system is not as good
as that required by the FFP criterion then, in the long
term, there will be higher proportions of the data than
expected falling above the previously defined limits. So
the T-H monitoring system rests on:  (a) defining limits
for d  based on the  FFP criterion; and (b) deciding

whether the duplicated data conform to it, by seeing how
the differences lie in relation to the specified percentile
limits.

However, there is a complication. In most analytical
systems  the repeatability standard deviation increases as
a function of the concentration of the analyte. Therefore,
if we are  analysing unknown test materials containing
variable concentrations of analyte, the analytical
precision, characterised by σ r , will not remain constant.

Consequently, we cannot have a single specification for
percentiles of d . Fortunately the variation in precision

can usually be modelled adequately by relating σ r to the

analyte concentration c as follows3:



σ r Lc Bc= +3 ,

where cL  is the repeatability detection limit and B, the

‘asymptotic RSD’, is the relative standard deviation to
which the results tend at high ( )c cL>>  concentrations

of analyte. (The form of the model equation as given is
not correct from a theoretical standpoint,3 but it performs
perfectly well in practice because the mismatch is small.)
The FFP criterion can be specified in a similar way, by
setting percentile bounds on d  as a function of  c. For

example, the 50th percentile of d  would be given by

( )P c BcL50 0 954 3= +. ,

where, in this case, cL  and  B are pre-defined by end-

user requirements.

These control limits are realised by plotting the functions
as lines on a graph. We place experimental points on
such a graph by plotting the absolute difference between
duplicated values against their mean value.  If the
concentration range spans orders of magnitude, log/log
axes are best used since, if the measured concentrations
are well above the detection limit of the method, the
control bounds are straight lines, as in Example 1.

Example 1
In this instance, the specified FFP criterion is B = 0.05,
i.e., we require an RSD of 5% irrespective of the
concentration. The 50th percentile more or less bisects
the group of datapoints (Fig. 1), and none of the points
fall above the 95th percentile.  These data are therefore
consistent with a system performing broadly in line with
the FFP criterion.

Example 2
In the second example, the FFP criterion is defined by a
detection limit of 15 units and an asymptotic RSD of
5%, which gives rise to curved percentiles on the log-log
plot (Fig. 2). In this particular example, the results fall
into two  groups over the concentration range.  Because
a majority (9/11) of the points in the lower concentration
group fall above the 50th percentile, and 3/11 of them
fall above the 95th percentile, the analytical system must
be performing less well than the FFP requirement over
that concentration range. That is an indication that the
detection limit achieved by the analytical method being
used is not as low as the FFP specification. The points of
the higher group are more or less bisected by the 50th
percentile and hence the analytical system conforms with
the criterion over that part of the concentration range.
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