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Significance, importance, and power 
 
It is an important function of statistics to protect us 
against unwarranted conclusions.  This need arises 
when we are assessing measurement results to see 
if there has been a change in something, for 
example the calibration of an instrument or the 
efficacy of a process. Analytical chemists are all 
familiar (well, more or less) with the idea of 
statistical significance. We say that an outcome is 
statistically significant when it persuades us that 
the difference of a mean from a reference value is 
very unlikely to have arisen by chance, given the 
variability of the measurement results. We are 
perhaps unduly aware of this significance-testing 
function of statistics because we make a substantial 
investment of time in understanding the somewhat 
intricate rationale behind such tests. Because of 
that we tend to overlook a simpler but more 
important aspect of our results, that is, whether 
any such difference is of an important magnitude. 
 
We see this tension between significance and 
importance rather clearly in nutritional studies. 
Suppose that we want to test the alleged beneficial 
effect of eating carrots on a minor disease. We recruit 
20 000 volunteers and split them at random into two 
groups. The control group eat what they normally eat: 
the experimental group eat in addition a daily portion 
of carrots. After a period, the incidence of the disease 
in each group is compared. The outcome is highly 
significant, so that we know that carrots really work. 
But the incidence of the disease in the control group is 
20% and in the experimental group is 18%. Most 
people would decide that the improvement was not 
worth the change in lifestyle, in other words, not 
important. We note that the criterion of importance 
comes from an independent external source, not from 
the data. 
 
Significance 
Suppose that we were testing the calibration of an 
elemental analyser via the reading for nitrogen content 
obtained when the amino-acid glycine was used as the 
test material. We can calculate that the nitrogen 
content of pure glycine is 18.92 %. (This might be 
relevant, for example, in the determination of protein 
in foodstuffs.)  We repeat the measurement five times 
and obtain the following results: 
 
18.74, 18.66, 19.01, 18.92, 18.94. 
 
From the statistics (Box 1) we can see that the 
difference between the mean result and the formula 
concentration is not significantly different from zero. 

The p-value (the probability, under the null 
hypothesis, of obtaining a mean result equal to or 
more extreme than observed) is 0.37, comfortably 
higher than the usual 0.05 criterion of significance. It 
seems that there is nothing that requires action. A 
graphical representation shows this also. (Note: it’s 
always a good idea to make a graph of the data to 
check that there is nothing unexpected in the data). 
 

Box 1.  Null (H0) and alternative (HA) hypotheses 
and statistics from example data 

 
92.18:92.18:0 ≠= µµ AHH  

x  = 18.854      s  =  0.147 ns  = 0.0658 
t = 1.00   p =  0.37 

 

 
 
 
Importance 
We can’t let the matter rest there—we need to know 
whether the difference is likely to be important, that 
is, big enough to affect adversely any decisions made 
on the basis of the result of the machine. Suppose we 
judge that an error of 0.1 is the maximum tolerable for 
our purposes. The observed (absolute) difference is 
|18.85-18.92| = 0.07, slightly smaller than 0.1. At first 
sight this looks acceptable, but we must be aware of 
the likely range of possible mean results. The 95% 
confidence limits tell us that differences between -0.25 
and 0.12 would not be rare. So our experiment has 
been ineffectual—the outcome is not significant, and 
we don’t know whether it is important either. 
 
Suppose that we now decide to do a larger (but not 
very sensible) experiment with 100 results in order to 
get a better estimate of the mean value. The mean 
turns out to be 19.00. The difference estimate is 0.08, 
but the standard error of the mean ( ns ) is now 
much smaller (because n is 20 times greater while s 
will be much the same) and the difference is now 
significant at 95% confidence. Here we have an 
outcome that is significant but not important! To 
ensure an outcome that is useful, we need a minimal 
experiment but a high probability that a false null 
hypothesis will be rejected (the power of the test) 
when there is a difference of important magnitude. 
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Power 
We therefore need to plan our experiment in advance 
to check whether it would probably give a useful 
result—a mean result that is significant and important. 
Assuming that we know the standard deviation of the 
results, we can calculate the power of the test for a 
particular number of observations and a given 
important difference (see Box 2). 
 

The power of a test is the 
probability of rejecting the null 

hypothesis when it is false 
 
Some examples of power calculations are shown in 
Figure 1. Suppose we took the standard deviation of 
the results as 0.2 % (mass fraction) and, as before, 
regarded a difference of 0.1 as important. Then we 
would need 33 repeated results for a power of 0.8, i.e., 
to see a significant difference in four experiments out 
of five. If the precision were better ( 1.0=σ ), we 
could get the same level of power with 8 results. Of 
course, in an example such as that given, we may have 
little or no control over the precision. It might be 
necessary to reconsider our ideas about the magnitude 
of an error regarded as important. 
 

 
Figure 1. Power of a one-sample two-tailed t-test for a difference of 
0.1. (See Box 2 for the explanation of how power is calculated.) 
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Box 2.  Power calculations 

Consider a one-sample two-tailed t-test of a mean at 
95% confidence, where we have recorded n results by 
a method with standard deviationσ . Under the null 
hypothesis 00 : µµ =H , we consider whether the mean 
x of our results would be likely to occur if they were 
a random selection from a normal distribution with 
mean 0µ  and standard deviation nσ . The 
hypothesis is rejected (i.e., we find that there is a 
significant difference) when either 

nx σµ 96.10 −<  or nx σµ 96.10 +> . These 
zones of rejection are shaded red below, with the 
limits labelled L (lower) and U (upper) respectively.  
 

 
 
We can calculate the power of the test only under 
particular alternative hypotheses such as AAH µµ =: . 
Then, if our value of x were less than U, the null 
hypothesis 0 would be accepted with a probability H
of β . Thus β is the probability of false acceptance 
of 0 , and can be evaluated from a table of the H
normal distribution as the area under the A curve to H
the left of U (shaded green). The power of the test 
under A  is simplyH β−1 , the area shaded orange in 
the Figure.  
 
(Note that if 0µ  were close to Aµ , but still greater, 
probabilities below L would have to be considered in 
addition. An argument that is a mirror image of the 
above applies when 0µµ <A .) 
 
The power of a test for a given confidence level 
depends onσ , n, and Aµµ −=∆ 0 , and any one of 
these variables can be calculated from the others. Most 
often we need to know the power as a function of n, 
given a method with standard deviationσ and a 
deviation ∆  regarded as of important magnitude. This 
enables us to design an experiment that will provide a 
useful result on nearly every occasion. 
 
Power calculations are available in statistical software. 
They can be applied to all kinds of statistical test, 
including two-sample tests and analysis of variance, 
and can be used to compare the performance of two or 
more test methods that have the same aim. 
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