
COMPLETE ANALYTICAL MODEL OF MICROFLUIDIC DIPOLES 
AND QUADRUPOLES: APPLICATION TO BRUSH STROKE AND 

GRADIENT CONTROL WITH MICROFLUIDIC PROBES 
Thomas Gervais*1, Mohammadali Safavieh2, Mohammad Qasaimeh3, and David Juncker4 

1 Engineering Physics Department, École Polytechnique de Montréal, Montreal, QC, Canada 
2Institut national de la recherche scientifique (INRS), Varennes, QC, Canada 

3New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 
4Biomedical Engineering Department, McGill University, Montreal, QC, Canada, 

 
ABSTRACT 

Microfluidic probes (MFP) are an emerging class of open microfluidic systems that generate precisely 
controlled flow patterns over an open surface without the need for closed microchannels, with 
applications in cell studies and surface patterning. Currently, hydrodynamic properties specifically 
hydrodynamic flow confinement (HFC) dimensions and diffusive broadening under two-aperture MFPs 
are determined only through lengthy numerical simulations, or trial and error experiments. Here, we 
report a complete set of analytical results and scaling laws based on three user-defined parameters that 
accurately describe all key properties of both microfluidic dipoles (MD) and microfluidic quadrupoles 
(MQ). 
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INTRODUCTION 
A microfluidic probe (MFP) is a mobile channel-less probe placed closely to the substrate to form a 

narrow gap into which liquid is injected from a source into the gap and aspirated from another aperture 
(Figure 1A). By adjusting the injection and the aspiration flow rates, the liquid can be hydrodynamically 
confined by the surrounding medium [1]. The MFP has many applications, among which are surface gra-
dient generation or analysis and perfusion of organotypic tissue slices [1]. Here, we provide analytical 
model of the HFC based on the flow ratio α (aspiration flow rate to injection flow rate), the gap size G 
between the MD and the substrate, and the diffusion broadening Lgrad of the fluid and provide the compar-
ison with the previously published MQ.                                            

    
Figure 1 : Advective diffusive transport in both MDs (left column) and MQs (right column). (A-D) 3D operation 
schematics and side view. (E-F) Flow streamlines and general probe dimensions. The presence of points of zero 
velocity, or stagnation points (SP), is highlighted. HFC characteristic dimension as described by maximum HFC 
radius R. (G-H) Finite element simulations of steady state diffusion of a reagent (red) in the computed streamlines  
(I-J) Typical experimental data showing HFC area. I: d = 50 µm, a = 25 µm ,Qinj = 0.44 nL/s, and α = 2.5. 
J: d = 1080 µm, a = 360 µm, Qinj = 10 nL/s, and α = 10.  
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METHOD 
The three main MFP design criteria – aperture size a, aperture shape (typically square or round), and 

the interaperture distance d – are linked to the maximum HFC radius R and gradient length scale Lgrad. 3D 
finite element simulations of MDs and MQs have been performed using COMSOL, Multiphysics 
(Burlington, MA). Results for both MDs and MQs are compared with previously published experimental 
data [2].   
 
RESULTS AND DISCUSSION 
Flow velocity  

When a low Reynolds number flow is confined between two parallel surfaces forming a narrow gap, a 
special flow profile arises called Hele-Shaw flow. Hele-Shaw flows are parabolic in the z direction while 
their height-averaged vector field can be considered irrotational, that is, deriving from a scalar potential 
function called a velocity potential. In this sense, they are mathematically analogous to 2D electrostatics 
fields.  

 
v(x, y) = −

G2

12η
∇p(x, y)                                       (1) 

where p(x,y) is the pressure profile, η is the viscosity and G is the gap size. In all cases, for the model 
to hold, Hele-Shaw condition (Re <<1, G2 << d2) must be respected. Yet this condition is easily satisfied 
in the hydrodynamic flow confinement area under a microfluidic probe. In order to compute flow in a 
more complex situation, we have applied superposition principle by setting two point sources with the 
flow rates of Qasp=αQinj located at ri = ( ±d/2, 0 ) from center to center of the probes (Fig. 1E). Therefore, 
we have: 

v(x,y) =
Qinj

2πG
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#
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%

&
'                                                 (2) 

providing the flow behavior under the MFP except inside the apertures with dimension a [2]. Two or-
thogonal pairs of sources are located at r’=(±d/2,0),(0, ±d/2) with the same flow ratio, using the same ap-
proach, model a microfluidic quadrupole (Fig. 1F). 
  
Stagnation point and HFC analysis 

When α > 1, there is a point of zero velocity (stagnation point) outside of injection aperture located on 
the x-axis at a distance R away from center of two probes as shown in Figure 1E. The position of the stag-
nation point can be obtained by setting v(RMD, 0) = 0  in Eq. 2. It is compared in Eq. 3 to the analogous re-
sult for microfluidic quadrupoles described elsewhere [2]. 

     
RMD =

d(α +1)
2(α −1)

, RMQ = ±
d
2

d(α +1)
2(α −1)

            (3) 

 
Diffusion broadening 
Injected reagents in a MFP will circulate within the HFC and be recaptured by the probe, yet diffusion 
broadening will occur around its as described by the advection-diffusion equation: 

       ∂C
∂t

= D∇2C −v ⋅∇C ,             (4) 

where C is the relative concentration (0 to 1), D is the species diffusion coefficient, and t is time, and v is 
found in Eq. 2. To extract the diffusion scale or gradient length Lgrad, we linearize Eq. 2 around x = RMD 
and make Eq. 4 dimensionless:  

        ∂C
∂t

=
∂2C
∂x 2 + x ∂C

∂x
,             (5) 

where 𝑡 = 4𝐷𝑡𝑃𝑒/𝑑!, 𝑥 = 2 𝑃𝑒(𝑥 − 𝑅!")/𝑑, and  𝑃𝑒 = 𝑄!"#(𝛼 − 1)!/8𝜋𝛼𝐷𝐺. Thus 𝑡! = 𝑡/𝑡 =
𝑑!/4𝐷𝑃𝑒 and 𝑥! = (𝑥 − 𝑅!")/𝑥 = 𝑑/2 𝑃𝑒 are the natural time and length scales of the diffusion 
broadening (𝑡! ≈ 0.3𝑠, 𝑎𝑛𝑑  𝑥 ≈ 10  𝜇𝑚 when using the typical experimental conditions described in Fig. 
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1I.) Figure 2 shows a comparison between numerical experiments and mathematical models to predict 
both R and Lgrad for both MDs and MQs. Under the point flow rate assumption (a/d << 1), the hydrody-
namic model described above accurately matches both numerical simulation and experimental data to 
within 1%. As a/d increases, the error on the model prediction increases, reaching 20% on both R and 
Lgrad in the extreme case when a/d = 0.5.  
 
Confinement zone in the MDs operation 

Controlling the values of R and W is crucial during the MFP’s operation as those parameters directly 
define the shape of the probe’s “writing tip”. By moving it parallel to the dipole axis, the probe draws the 
line as shown in Figure 3 (W//). Conversely,  moving perpendicular to the dipole axis gives a brush stroke 
of thickness: 

W⊥ = d / 2 + RMD =
αd
α −1

                          (6)  

Likewise, similar analysis can be obtained for the MQ to provide the probe’s effective brush stroke in sur-
face patterning: 

 
 
W! = d,W⊥ = cRMQ =

cd
2

α +1
α −1

                         (7) 

where c is the constant and has the value of c=1 when the fluid is injected in one of the injection probe 
and c=2 when fluid is injected in both injection probes as shown in Figure 1F. If the probe tilted with the 
angle θ, using simple superposition  rule we can calculate the width of the trait by: 

 Weff (α ) = W!(α )cosθ + W⊥ (α )sinθ             (8)   
It is worth to note that in the current analysis, the effective shape of the stroke in Eq. 8 omits the reagent’s 
diffusion length in the MFP operation. It also assumes that the probe moves at a velocity much lower than 
the fluid velocity inside the MFP. The diffusion length varied with respect to Pe1/2 [2]. 

        

 
 
Figure 2. Theoretical predictions for HFC and gradient length of MD (red) and MQ (blue) with respect to flow 
ratio. Flow rate ratio α and aperture ratio a/d are varied  while Qinj, G and D are kept constant. (A) Normalized 
HFC length 2R/d for both MD and MQ  probes. (B) Normalized gradient length 2LGrad/d with respect to flow rate 
ratio α.  

 

0,05$

0,1$

0,15$

0,2$

0,25$

0,3$

0,35$

0,4$

0,45$

2,5$ 3,5$ 4,5$ 5,5$ 6,5$ 7,5$

2L
Gr
ad
/d
((

α(=(Qasp/Qinj(

Theory$(MFP)$
a/d$=$0.5$
a/d$=$0.31$
a/d$=$0.25$
a/d$=$0.17$
Theory$(MQ)$
a/d$=$0.33$(MQ$expt)$

1"

1,2"

1,4"

1,6"

1,8"

2"

2,2"

2,4"

2,6"

2,8"

3"

2" 3" 4" 5" 6" 7" 8"

2R
/d
%%

α%=%Qasp/Qinj%

Theory"(MD)"

a/d"="0.17"

a/d"="0.25"

a/d"="0.31""

a/d"="0.5"(square)"

a/d~0"(2D"simulaBons)"

Theory"(MQ)"

a/d"="0.33"(MQ,"expt)"

α +1
α −1

α +1
α −1

A"

3, 62 πGD
4Qinj (1+α)

2, 56 8πGD
Qinj

α
(α −1)3

B"

1300



 
 
 
 
 
 
 
 
Figure 3: MFP operation parameters such as the brush stroke can be modeled as a linear combination of max-

imum probe dimension parallel and perpendicular to probe displacement. 
 
 Shear stress plays an important role in biological event as it has direct effect on cellular/intercellular 

phenomena. In Hele-Shaw flow, shear stress is proportional to mean velocity: 

             (9) 
Under typical MFP operating conditions (Fig. 1I), it is thus naturally kept low, i.e. in the < 1 Pa range. 

Table 1 summarizes the various scaling laws obtained. 
 
Table 1. Derived scaling laws for microfluidic probes operated within the Hele-Shaw flow regime. 

                  
CONCLUSION 

The current analytical model yields simple equations that accurately predict all major hydrodynamic 
parameters of MFPs (Table 1), and will help in the on-going effort to rationalize design and automate 
MFP operation, such as MFP brush stroke according to writing angle as well as the gradient steepness at 
stagnation points [4]. These equations will help to advance the field of MFPs, and might be extended to 
the analysis of MFPs under lateral geometry [5]. 
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τ (x, y) =
6η
G
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