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Organisation of a proficiency test

“Harmonised Protocol”. Pure Appl Chem. 2006, 78, 145-196.



Where do we use statistics in
proficiency testing?

• Finding a consensus and its uncertainty to
use as an assigned value

• Assessing participants’ results
• Assessing the efficacy of the PT scheme
• Testing for sufficient homogeneity and

stability of the distributed test material
• Others



Criteria for an ideal scoring
method

• Adds value to raw results.
• Easily understandable, based on the

properties of the normal distribution.
• Has no arbitrary scaling transformation.
• Is transferable between different

concentrations, analytes, matrices, and
measurement principles.



How can we construct a score?

• An obvious idea is to utilise the properties
of the normal distribution to interpret the
results of a proficiency test.

BUT…

We do not make
any assumptions
about the actual
data.



Example dataset A
• Determination of protein nitrogen in a meat

product.



A weak scoring method

• On average, slightly more than 95% of laboratories
receive z-score within the range ±2.
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Robust mean and standard
deviation

• Robust statistics is applicable to datasets that
look like normally distributed samples
contaminated with outliers and stragglers (i.e.,
unimodal and roughly symmetric.

• The method downweights the otherwise large
influence of outliers and stragglers on the
estimates.

• It models the central ‘reliable’ part of the dataset.
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Can I use robust estimates?

Measurement axis

Skewed

Bimodal

Heavy-tailed



 nxxx 21Tx

MAD5.1ˆ,medianˆ,0,21Set 00  pk

















ppipp

ppipp

ppippi

i

kxk

kxk

kxkx

x







ˆˆifˆˆ

ˆˆifˆˆ

ˆˆˆˆif
~

)~var()(ˆ

)~(meanˆ
2

1

1

ip

ip

xkf

x













1converged,notIf pp

Huber’s H15



References: robust statistics

• Analytical Methods Committee,
Analyst,1989, 114, 1489

• AMC Technical Brief No 6, 2001
(download from www/rsc.org/amc)

• P J Rousseeuw, J. Chemomet, 1991, 5, 1.



Is that enough?

• On average, slightly less than 95% of
laboratories receive a z-score between ±2.
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What more do we need?

• We need a method that evaluates the data
in relation to its intended use, rather than
merely describing it.

• This adds value to the data rather than
simply summarising it.

• The method is based on fitness for
purpose.



Fitness for purpose

• Fitness for purpose occurs when the uncertainty
of the result uf gives best value for money.

• If the uncertainty is smaller than uf , the analysis
may be too expensive.

• If the uncertainty is larger than uf , the cost and
the probability of a mistaken decision will rise.



Fitness for purpose

• The value of uf can sometimes be estimated
objectively by decision theoretic methods, but is
most often simply agreed between the
laboratory and the customer by professional
judgement.

• In the proficiency test context, uf should be
determined by the scheme provider.

Reference: T Fearn, S A Fisher, M Thompson,
and S L R Ellison, Analyst, 2002, 127, 818-824.



• If we now define a z-score thus:

we have a z-score that is both robustified against
extreme values and tells us something about fitness
for purpose.

• In an exactly compliant laboratory, scores of 2<|z|<3
will be encountered occasionally, and scores of |z|>3
rarely. Better performers will receive fewer of these
extreme z-scores.

A score that meets all of the
criteria

  fpprob uxz   whereˆ



Example data A again
• Suppose that the fitness for purpose criterion set

for the analysis is an RSD of 1%. This gives us:
021.01.201.0 p



Finding a consensus from
participants’ results

• The consensus is not theoretically the best
option for the assigned value but is usually
the only practicable value.

• The consensus is not necessarily identical
with the true value. PT providers have to
be alert to this possibility.



What is a ‘consensus’?

• Mean? - easy to calculate, but affected by
outliers and asymmetry.

• Robust mean? - fairly easy to calculate, handles
outliers but affected by asymmetry.

• Median? - easy to calculate, more robust for
asymmetric distributions, but larger standard
error than robust mean.

• Mode? - intuitively good, difficult to define,
difficult to calculate.



• The robust mean provides a useful consensus
in the great majority of instances, where the
underlying distribution is roughly symmetric
and there are 0-10% outliers.

• The uncertainty of this consensus can be
safely taken as

The robust mean as consensus
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When can I use robust estimates?

Measurement axis

Skewed

Bimodal

Heavy-tailed



Skewed distributions

• Skews can arise when the participants’
results come from two or more
inconsistent methods.

• They can also arise as an artefact at low
concentrations of analyte as a result of
data recording practice.

• Rarely, skews can arise when the
distribution is truly lognormal.



Possible use of a trimmed data
set?



Can I use the mode?
How many modes? Where are they?



The normal kernel density for
identifying a mode

where Φ is the standard normal density,

AMC Technical Brief No. 4
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A normal kernel



A kernel density



Another kernel density



Graphical representation of sample data



Kernel density of the aflatoxin data



Uncertainty of the mode

• The uncertainty of the consensus can be
estimated as the standard error of the
mode by applying the bootstrap to the
procedure.

• The bootstrap is a general procedure
based on resampling for estimating
standard errors of complex statistics.

• Reference: Bump-hunting for the proficiency
tester – searching for multimodality. P J
Lowthian and M Thompson, Analyst, 2002,127,
1359-1364.



The normal mixture model

AMC Technical Brief No 23, and AMC Software.
Thompson, Acc Qual Assur, 2006, 10, 501-505.
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Mixture models found by the maximum
likelihood method (the EM algorithm)

• The M-step

• The E-step
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Kernel density and fit of 2-component
normal mixture model



Kernel density and variance-inflated
mixture model



Useful References

• Mixture models
M Thompson. Accred Qual Assur. 2006, 10, 501-505.
AMC Technical Brief No. 23, 2006. www/rsc.org/amc

• Kernel densities
B W Silverman, Density estimation for statistics and data
analysis. Chapman and Hall, London, 1986.
AMC Technical Brief, no. 4, 2001 www/rsc.org/amc

• The bootstrap
B Efron and R J Tibshirani, An introduction to the
bootstrap. Chapman and Hall, London, 1993
AMC Technical Brief, No. 8, 2001 www/rsc.org/amc



• Use z-scores based on fitness for
purpose.

• Estimate the consensus as the robust
mean and its uncertainty as
if the dataset is roughly symmetric.

• If the dataset is skewed and plausibly
composite, use kernel density methods
or mixture models

Conclusions—scoring

nrob̂



Homogeneity testing

• Comminute and mix bulk material.
• Split into distribution units.
• Select m>10 distribution units at random.
• Homogenise each one.
• Analyse 2 test portions from each in

random order, with high precision, and
conduct one-way analysis of variance on
results.



Design for homogeneity testing
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Problems with simple ANOVA
based on testing

• Analytical precision too low—method
cannot detect consequential degree of
heterogeneity.

• Analytical precision too high—method
finds significant degree of heterogeneity
that may not be consequential.

(Everything is heterogeneous!)

0:0 samH 









• Material passes homogeneity test if

• Problems are:
– ssam may not be well estimated;
– too big a probability of rejecting

satisfactory test material.

“Sufficient homogeneity”:
original definition

pLsams  3.0



Fearn test

• Test by rejecting when

Ref: Analyst, 2001, 127, 1359-1364.
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Problems with homogeneity
data

• Problems with data are common:
e.g., no proper randomisation, insufficient
precision, biases, trends, steps,
insufficient significant figures recorded,
outliers.

• Laboratories need detailed instructions.
• Data need careful scrutiny before

statistics.
• HP1 is incorrect in saying that all outlying

data should be retained.







General references

• The Harmonised Protocol (revised)
M Thompson, S L R Ellison and R Wood
Pure Appl. Chem., 2006, 78, 145-196.

• R E Lawn, M Thompson and R F Walker,
Proficiency testing in analytical chemistry. The
Royal Society of Chemistry, Cambridge, 1997.

• ISO Guide 43. International Standards
Organisation, Geneva, 1997.


