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An introduction to non-parametric statistics

Analytical Methods Committee, AMCTB No 57
Non-parametric statistical methods, which make fewer assumptions

about population error distributions, have perhaps been unjustly

neglected in the analytical sciences. A major advantage is that some

of them are so simple that they can be used “at the bench.”
Parameters or no parameters?

Analytical scientists generally make replicate measurements
and treat them as a random sample, from which estimates are
made of the properties of the (hypothetically innite) pop-
ulation of measurements. The population mean, condence
limits etc. are usually calculated using the assumption that the
underlying distribution is normal (Gaussian), with mean m and
variance s2, i.e. it can be summarised as N(m,s2). The two terms
m and s are the parameters of the distribution. Similarly a
binomial distribution is described as B(n, p), where the
parameters n and p are respectively the total number of
measurements and the probability of one of the two possible
outcomes.

This parameter-based approach to data handling is not
essential, and may not always be appropriate. Sometimes it is
known that a population distribution is not normal or even
close to it, so deductions made on the assumption of normality
might be unreliable. This is particularly true in cases where the
same measurements are made on similar but non-identical
sample materials of natural origin. The antibody levels in blood
plasma samples from different human subjects are roughly log-
normally distributed, with the addition of some subjects with
exceptionally high levels in various disease states. Methods that
do not make assumptions about the form of the population
distribution are called non-parametric or distribution-free
methods. In applying them the familiar approach to
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signicance testing is still used. We set up a null hypothesis H0

and nd the probability of obtaining the actual or more extreme
results if H0 is true: if this probability is very low H0 is rejected.
But their simplicity makes non-parametric methods attractive
even in situations where more familiar tests such as the t-test
might otherwise be applied, as the examples below will show.
Some simple examples

Suppose that an analytical reagent is stated to have a purity of
99.5%, and that successive batches are found to have purity
levels of 99.2%, 99.8%, 98.9%, 99.4%, 99.1%, 99.3%, and
99.0%. Is there evidence that the purity of the material is lower
than it should be? Such results are unlikely to come from a
normal population (aer all, the maximum possible purity is
100%) so a t-test or other parametric approach could well be
unsafe. A key statistic here is the median: the null hypothesis is
that the data come from a population with a median purity level
of 99.5%. To carry out the test we simply subtract this median
from each of the experimental results, and note the sign of the
result. This gives six minus signs and one positive sign, i.e. six of
the seven results lie below the median. (Any result that equals
the hypothetical median is ignored completely). The probability
of getting six (or more) minus signs out of seven is provided by
the binomial theorem, but the values are provided in statistical
tables, and can be memorised if we always make the same
number of measurements. Here the probability of getting 6 or
more minus signs is 0.0625, a little higher than the probability
level commonly used in signicance testing (p ¼ 0.05), so we
retain the null hypothesis that the results could come from a
population with a median purity of 99.5%. As always we have
not proved that they do come from such a population: we have
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failed to disprove it. Note that this is a one-tailed test, as the
question is whether the purity is lower than it should be. With
seven measurements the null hypothesis would only be rejected
at the p ¼ 0.05 level if all seven results give minus signs when
compared with the median value: this outcome has a proba-
bility of only (1/2)7 ¼ 1/128. This method is called the sign test,
and it can be extended to other situations, such as comparing
two sets of paired results, or studying a possible trend in a
sequence of results.

Another simple test with many applications is called Tukey's
Quick Test (aer John W. Tukey, a major gure in non-para-
metric statistics and initial data analysis) or the Tail Count Test,
the latter being a good description of its operation. It is used to
compare two independent data sets, which need not be of the
same size. Suppose we obtain six values of the level of atmo-
spheric NOx (mg m�3) at a roadside site: 128, 121, 117, 125, 131
and 119. At a nearby off-road site we make six more measure-
ments using the same analytical method, obtaining the results
120, 108, 109, 112, 114 and 110 mg m�3. Is there any evidence
that the NOx level is lower at the second site than at the rst?
These two sets of results could be compared using a (one-tailed)
t-test, but the Tukey approach is simpler. We simply count the
number of results in the rst data set that are higher than all the
values in the second set (there are 4 of them), and the number of
values in the second set that are lower than all those in the rst
set (5 of them). If either of these counts is zero, the test ends at
once with the null hypothesis (here, that moving away from the
road does not affect the NOx level) being accepted. Otherwise
the two counts are added together to provide the test statistic T
(¼ 9 here), and this is compared with the critical value. For a
one-tailed test at p¼ 0.05, Tmust be greater than or equal to 6 if
H0 is to be rejected. So H0 can be rejected here; the NOx level at
the off-road site does seem to be lower. The merit of the Tukey
method is that if the total number of measurements is no more
than �20, and if the two sample sizes are not greatly different
(conditions oenmet in analytical practice), the critical T values
are independent of sample size! For the rejection of the null
hypothesis in a one-tailed test the value of T must be $6, 7, 10
and 14 at p ¼ 0.05, 0.025, 0.005, and 0.0005 respectively. For a
two-tailed test the corresponding critical values of T are 7, 8, 11
and 15 respectively. This remarkable feature of the method
means that it can be carried out using mental arithmetic only.

What's not to like?

Many non-parametric methods have been developed, including
tests analogous to the familiar t- and F-tests, analysis of vari-
ance, and calibration and regression methods, but despite their
practical merits only a few have found favour in the analytical
sciences. One possible reason for this is that most non-para-
metric methods need a sample of at least 6 measurements.
Another reason is the growing popularity of robust methods
(AMCTB 6, 50), which are well suited to the common situation
where the error distribution is unimodal but not very different
from Gaussian. Furthermore it is evident that in the two
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examples above the full numerical content of the data is not
used. In the sign test only the signs of the differences are
counted, not their magnitude; and in the Tukey method the test
statistic is again a count rather than an exact reection of the
numerical results. We might thus expect that non-parametric
methods would be poorer than methods such as the t-test at
identifying signicant differences in situations where the error
distribution is Gaussian or nearly so. That is, non-parametric
methods may have less power, i.e. less capacity to reject a false
null hypothesis, than parametric ones in situations where the
latter can legitimately be applied. If a one-tailed t-test is applied
to the rst example above, the outcome suggests that the mean
of the seven purity values is (at p¼ 0.05) signicantly lower than
the quoted value of 99.5%. So the sign test and the t-test give
contradictory results in this case, albeit in a situation where the
t-test is of uncertain legitimacy. In the second example, where it
would be reasonable to assume a Gaussian error distribution,
the Tukey test suggests that the null hypothesis can be rejected
at p ¼ 0.025, but not at p ¼ 0.005, whereas a one-tailed t-test
gives the probability of the data under the null hypothesis as
only 0.0016. Again it seems that the non-parametric method is
the less powerful of the two. In comparing two or more tests
with the same purpose we use the concept of efficiency. The
efficiencies of two tests, 1 and 2, are compared using the ratio of
the sample sizes, n1/n2, necessary to detect a dened but small
departure from H0. The efficiency of the sign test relative to the
t-test when the latter is valid is only about 2/3. But in other cases
where the t-test is not appropriate the sign test can be up to
twice as efficient. The sign test is virtually assumption-free
(except that the data must come from a continuous distribu-
tion), but other non-parametric methods do make additional
assumptions: for example the Tukey test assumes a simple shi
of location between two samples from otherwise identical
distributions. So as with other statistical methods, non-para-
metric approaches must be used with care and discrimination,
but their practical merits remain formidable.
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