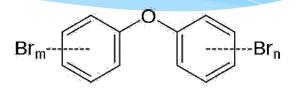
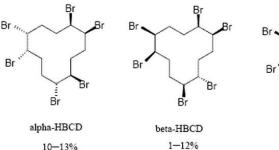
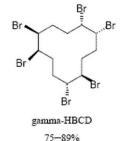
HIGH RESOLUTION MASS SPECTROMETRY PROVIDES NOVEL INSIGHTS INTO PRODUCTS OF HUMAN METABOLISM OF ORGANOPHOSPHATE AND BROMINATED FLAME RETARDANTS

Mohamed Abdallah

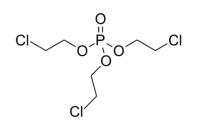
Division of Environmental Health & Risk Management Faculty of Life & Environmental Sciences

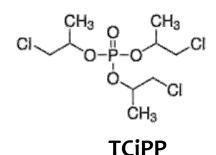


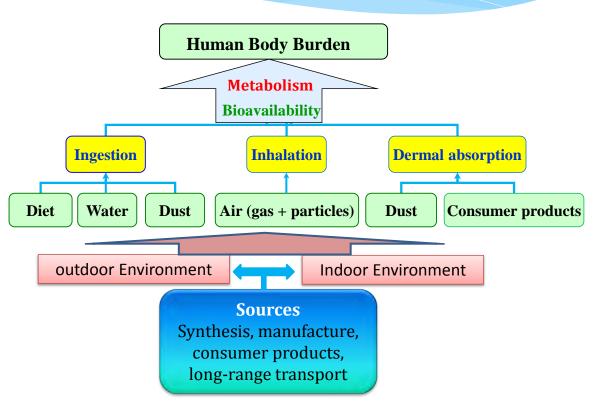

RMINGHAM


Organic Flame Retardants

- * Diverse group of halogenated chemicals.
- * Widely applied in building materials and consumer products.
- Persistent, Bioaccumulative and Toxic (PBT) properties.
- * Some are banned (e.g. Penta-BDEs) and others undergoing risk assessment.







TCEP

Organic Flame Retardants

- * Most FRs are physically blended with rather than chemically bonded to polymers.
- * Indoor dust has been consistently identified as a major pathway of human exposure to FRs.
- * Higher BFRs can be biotransformed to more toxic and bioaccumulative metabolites.
- * Further understanding of the metabolic process is essential for accurate risk assessment of these hazardous chemicals

Research Gap

- * Few studies have investigated the metabolic pathways of different flame retardants present in indoor dust.
- Most of these studies have focused on PBDEs using animal or human LME, hepatic S9 fractions and rarely, human hepatocytes.

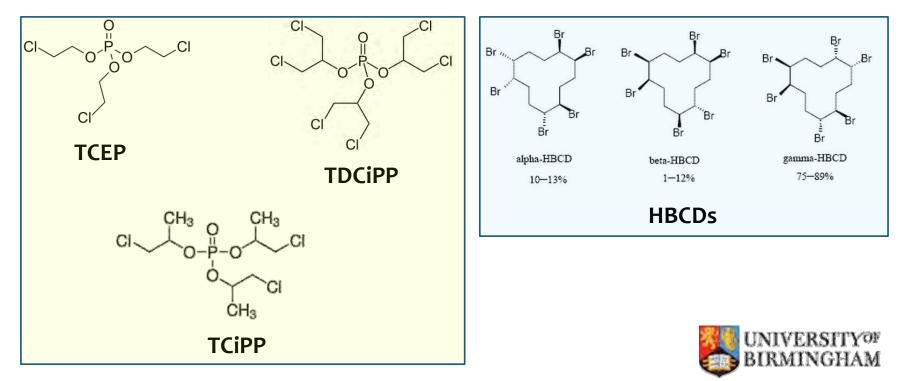
PBDEs are banned

Very little is known about the metabolic pathways of alternative flame retardants in humans.

Research Gap

- * Most *in vitro* biotransformation studies focus on exposing the metabolising system (LME, S9 or hepatocytes) to a single xenobiotic at a time which doesn't mimic the *in vivo* situation.
- * No studies of HBCD metabolism in humans.
- * No studies of TCEP, TCIPP and TDCPP in human hepatocytes which contain both Phase I and Phase II metabolic enzymes.
- * The analytical capabilities and performance of the Orbitrap[™]-MS have not been fully evaluated in the field of POPs analysis.

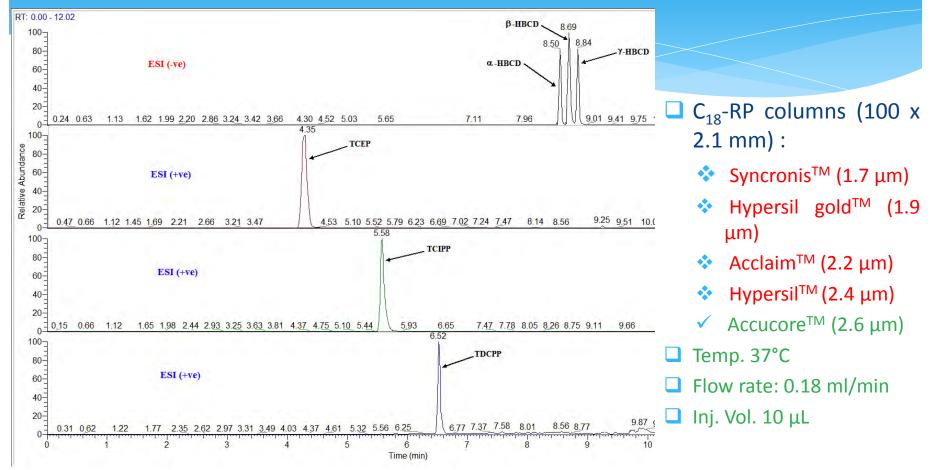
The Orbitrap-MS (Exactive plus)


- * High resolution (up to 140,000 FWHM).
- * High mass accuracy (up to 1 ppm)-improved selectivity.
- * High sensitivity- Adjustable AGC
- * High scan rate.
- * Rapid polarity switching of the ion source.
- * Optional HCD cell- AIF spectra for structural confirmation.
- * Optional quadropole for MS/MS analysis-we didn't have that.

* Study the metabolic profiles of HBCDs, TCEP, TCIPP and TDCPP in indoor dust (NIST SRM 2585), applied concomitantly to human hepatocyte cultures using UPLC-Orbitrap-MS.

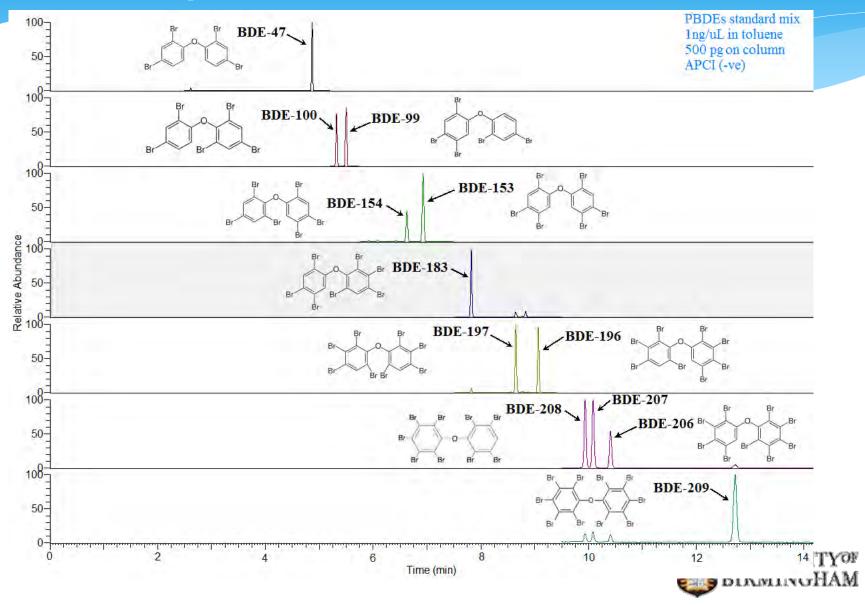
Experimental

- * <u>Cell cultures:</u> Human HEPG2/C3A cell lines were seeded and cultured in 6-well plates at 2 x 10⁶ cells/well in modified William's E medium (containing 5% FBS).
- * **Dosing Solutions:**
 - * D1- SRM 2585 dust extract (using Dionex ASE 350)
 - D2-Synthetic mixture of the target compounds (HBCDs and 3 PFRs) with the same concentrations as in D1.
 - * *Exposure Scenario*: 2 million cells exposed to the equivalent of 12 mg dust based on a 12.3 Kg toddler ingesting 200 mg dust/day.


Incubation at 37°C with humidified air containing 5% CO₂ for 24 hours

Extraction with methanol - QUESHERS

Instrumental Analysis- UPLC-ESI-Orbitrap MS



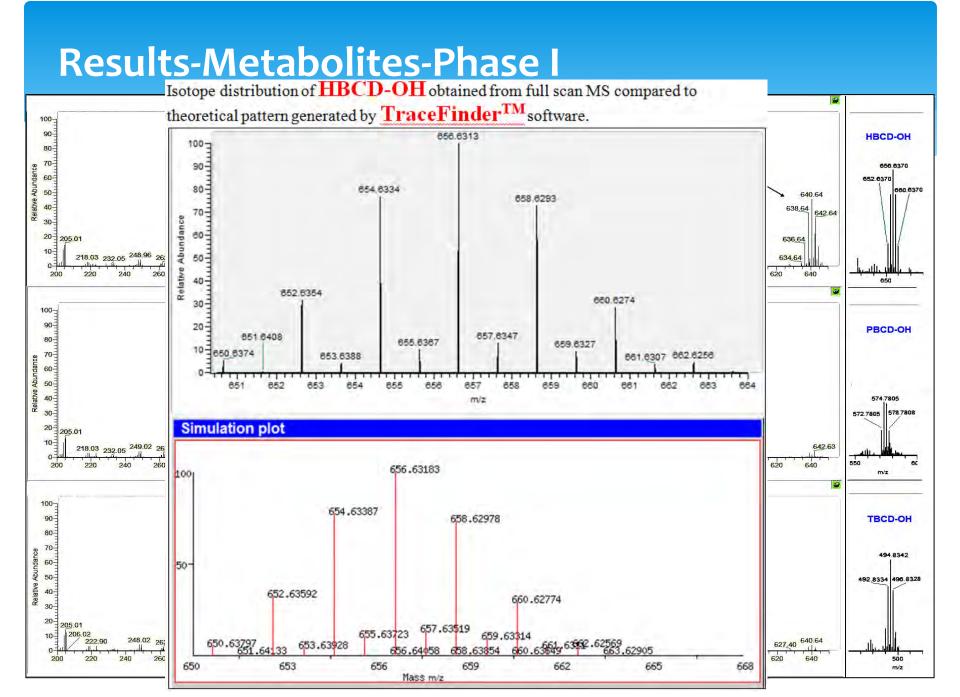
Results-Separation

Mobile phase: 1 mM ammonium acetate (mobile phase A) and Methanol (mobile phase B), each modified with 0.1% formic acid. The elution programme commenced with 25% B ramped up to 50% B over 0.5 min, then increased linearly to 100% B over 6 minutes. This was held for 4 minutes, then decreased to 50% B over 0.5 min and kept at this composition (to equilibriate the column) for a further 1 minute.

Results-Separation

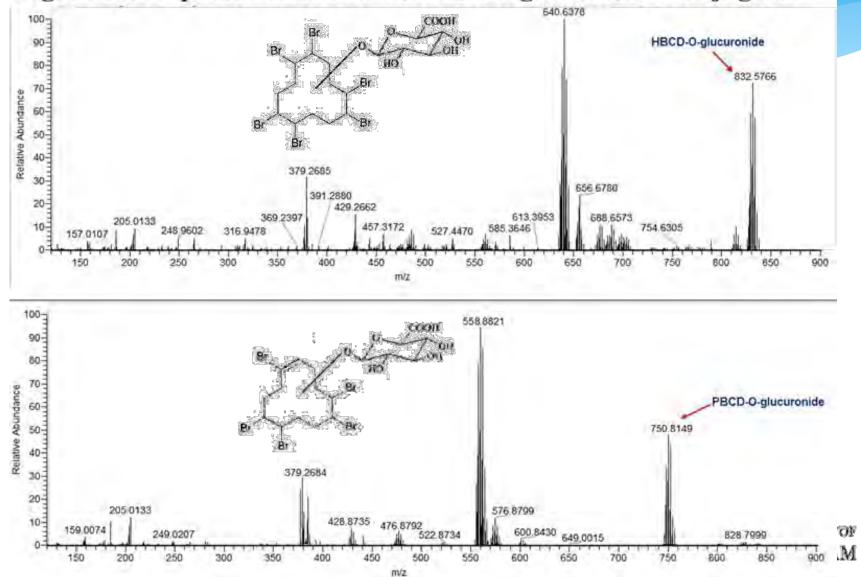
Results-Optimisation

Capillary temperature (°C)	300
Source heater temperature (°C)	300
Electrospray voltage (V)	4500
Sheath gas flow (a.u.)*	15
Auxiliary gas flow (a.u.)*	10
S-lens frequence (Hz)	50
Maximum injection time (ms)	80
Automatic gain control (ions)	3 x 10 ⁶
HCG energy (ev)	35
MS resolution (FWHM)	35000



Results-Metabolites

* Metabolite identification:


- * MS full scan, accurate mass (4 digits)-retention times.
- * Software (Analyst-Trace finder)
- * AIF spectra-useful for conjugates.
- * Confirmatory MS/MS analysis.

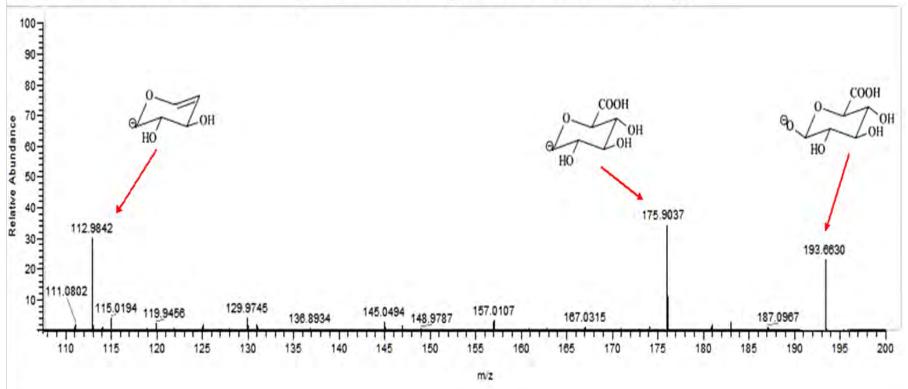

Results-Metabolites-Phase II

Fig. 3: Mass spectra of HBCD and PBCD glucuronide conjugates

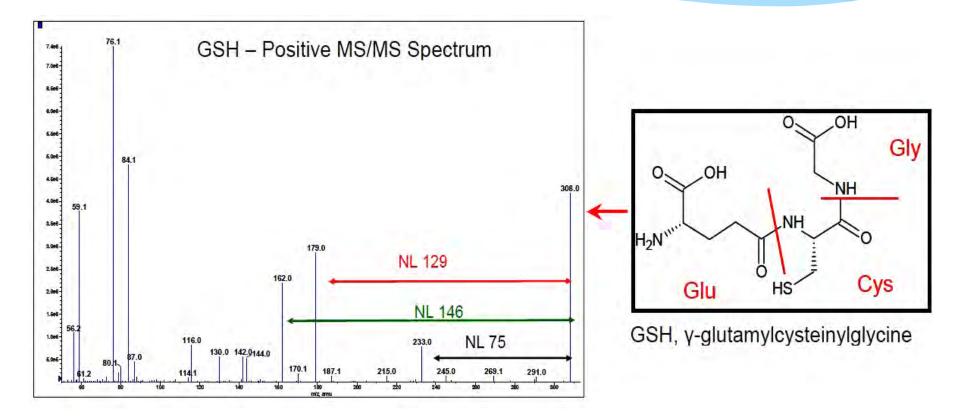
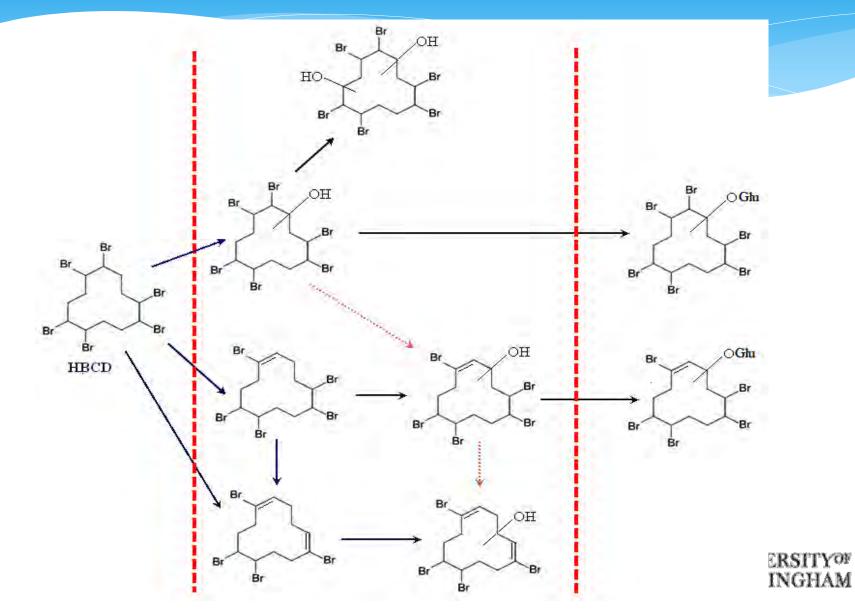

Metabolites-Phase II-confirmation

Fig. 5: All ion fragmentation (AIF) spectrum showing the characteristic mass fragments of a glucuronide conjugate

Metabolites-Phase II-confirmation

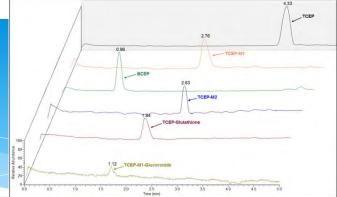


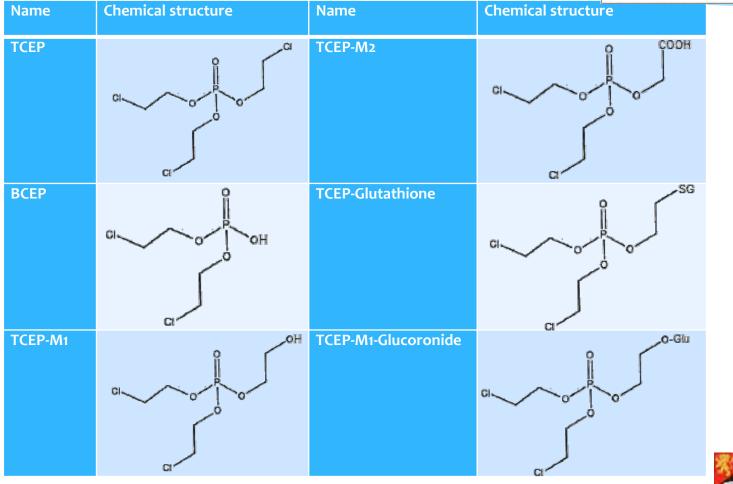
Metabolites-HBCDs

Reaction	Abbreviation	Chemical	Mol. ion	Main	Ret. time
		formula	[M-H] ⁻	fragment	(min)
Phase I					
Reductive	PBCD	$C_{6}H_{17}Br_{5}$	560.6388	80.9153	7.19, 7.58
debromination	(2 isomers)				
Reductive	TBCD	$C_6 H_{16} Br_4$	480.6618	80.9152	6.63
debromination					
Hydroxylation	HBCD-OH	$C_6 H_{17} Br_6 O$	656.6376	80.9152	5.89, 6.09,
	(5 isomers)				6.38, 6.72,
					7.11
Hydroxylation	Di-hydroxyl	$C_{6} H_{17} Br_{6} O_{2}$	672.6412	80.9152	5.08
	HBCD				
Hydroxylation	PBCD-OH	$C_6 H_{16} Br_5 O$	576.6780	80.9154	5.48, 5.71
	(2 isomers)				
Hydroxylationn	TBCD-OH	$C_6 H_{15} Br_4 O$	496.6778	80.9153	5.29
Phase II					
Glucuronidation	HBCD-O-Glu	${\rm C}_{12}{\rm H}_{26}{\rm Br}_6{\rm O}_6$	832.5766	80.9153	4.68
Glucuronidation	PBCD-O-Glu	$C_{12}H_{25}Br_5O_6$	750.8149	80.9153	3.22
		12 23 3 0			

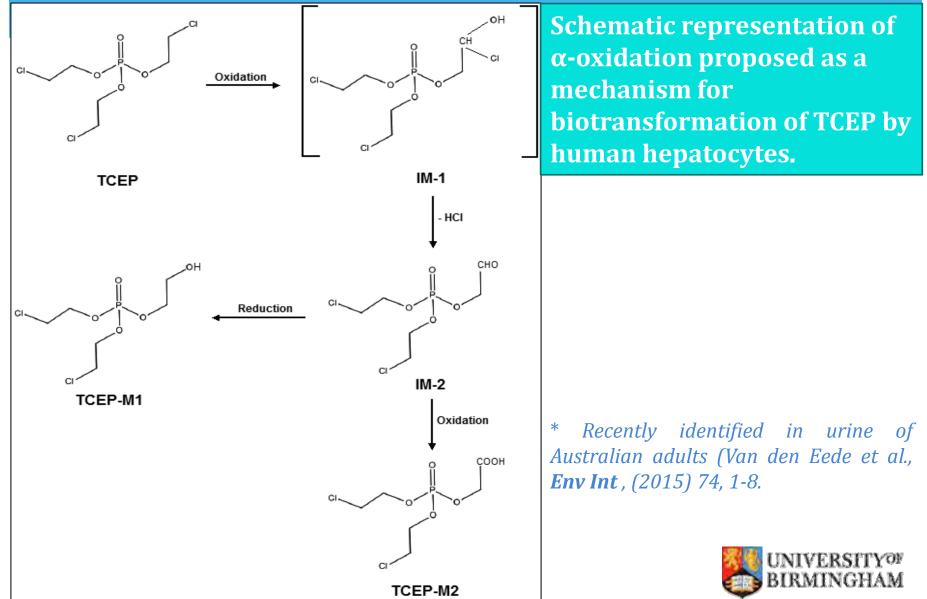
Metabolic Profile-HBCD

Metabolites-chlorinated PFRs


- * Phase I:
 - * Dealkylation: Formation of the Di-phosphate ester.
 - * Oxidative dehalogenation: replacement of Cl with OH


* Phase II:

- * Glucuronide conjugates
- * Glutathione conjugates.


Metabolic Profile-TCEP

Metabolic Profile-TCEP

Metabolic Profile of TCiPP

the second s		Molecular ion [M+H]+	Theoretical mass	
C9H18Cl3O4P	a do for	327.0081	327.0009	
C6 H13 Cl2 O4 P	a do de de	250.9929	251.0002	
C9 H19 Cl2 O5 P	C C C C C C C C C C C C C C C C C C C	309.0402	309.0348	
C6 H12 Cl2 O6 P	CI COOH	322.9892	323.0140	
C19 H34 Cl2 N3 O10 P S	a si	598.1295	598.1080	
	formula C9H18Cl3O4P C6 H13 Cl2 O4 P C9 H19 Cl2 O5 P C6 H12 Cl2 O6 P C19 H34 Cl2 N3	formula $C_9H_{18}Cl_3O_4P$ 4 <	formulaion [M+H]+C9H18Cl3O4P $\int_{G} \int_{G} \int_$	

Name	Molecular formula	Chemical structure	Molecular ion [M+H]+	Theoretical mass
TDCIPP	C9 H15 Cl6 O4 P		430.8882	430.8809
BDCIPP	C6 H11 Cl4 O4 P		320.9192	320.9120
DCIPP	C3 H7 Cl2 O4 P		208.9533	208.9459
TDCIPP-M1	C9 H16 Cl5 O5 P		412.9062	412.9149
TDCIPP-M2	C9 H14 CI5 O6 P		426.8787	426.8942

COOH

,CI

0

702.0208

701.9982

C₁₉ H₃₁ Cl₅ N₃ O₁₀ P S

a.

c

TDCIPP-

Glutathione

Conclusions

- * Human HepG2 cell lines can metabolise HBCDs, TCEP, TCIPP and TDCPP present in indoor dust.
- * HBCDs undergoes oxidative hydroxylation and reductive debromination during phase I metabolism. Penta- and Tetrabrominated derivatives were detected together with their hydroxylated metabolites. Phase II glucuronidation was observed for both HBCDs and PBCDs.
- * The biphosphate ester was the major metabolite observed for TCEP, TCIPP and TDCPP followed by the oxidative dechlorinated metabolite. Both glucuronide and glutathione conjugates were detected as a result of Phase II metabolism.

- * α-oxidation was proposed as a mechanism for biotransformation of PFRs by human hepatocytes.
- * In total, 6 different brominated and chlorinated FRs and their 37 metabolites were *simultaneously* separated and identified in one run.

Acknowledgments

- * Stuart Harrad, Gopal Pawar
- * Maciej Bromirski*, Kyle D'Silva*
- * Jinkang zhang**, Mark Viant**

* Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany.
** School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.

