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Estimating sampling uncertainty – how many
duplicate samples are needed?

Analytical Methods Committee, AMCTB No 58
A knowledge of the measurement uncertainty arising from sampling is

crucial for the rational design of sampling programmes and the

interpretation of their outputs (AMC Technical Briefs No 16, 2008).

Usually the principal source of uncertainty is the lack of homogeneity

(either spatial or temporal) in the object of sampling – the sampling

target. Other sources of variation—the analytical and sampling

processes—are also important.
This Technical Brief concentrates on these sources of variation,
the estimation of the corresponding uncertainties, and the
reliability of these estimates. An evaluation of the magnitude of
heterogeneity of the sampling target is valuable because it
facilitates the design of a sampling strategy of appropriate
power and leads to the best use of sampling and analytical
resources. Lack of such knowledge could lead to effort wasted in
addressing minor sources of variation whilst more important
ones are neglected.
Fig. 1 Schematic effect of target heterogeneity on sampling uncer-
tainty. Target A has fine structure, while Target B has coarser structure.
Grey and white bars indicate regions of high and low concentration of
contaminant. Duplicate samples each comprising four randomly-
placed increments are shown as squares, coloured red (first sample)
and blue (second sample). A greater between-sample (within target)
variation with the same pattern would be evident in the coarser target.
How target heterogeneity and sample
size interact

Fig. 1 below illustrates schematically the variation in targets and
samples, in space (for static targets) or in time (forowing targets).
It shows how the coarseness of the heterogeneity inuences the
way that variation might be observed within and between indi-
vidual samples. The striped rectangles represent areas to be
assessed for contamination, i.e., different sampling targets. The
dark and light stripes in each rectangle indicate regions of high
and low contamination respectively. Superimposed on each
sampling target are duplicated samples each comprising four
increments, which are portions of the target taken at random
positions within the sampling target to make up the composite
sample. These increments are indicated by the coloured squares,
the size of which suggests the relative size of the increment.

Next consider the level of agreement between duplicate
samples from the same target. Case A indicates target hetero-
geneity on a ne scale – in this situation the differences between
duplicate composite samples are (on average) small, because
the increments tend towards an average contamination. In Case
This journal is © The Royal Society of Chemistry 2014
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Table 1 Ranges (5–95%) of estimates of relative standard deviation
(RSD) – the standard deviation expressed as a percentage of the mean

Example 1 RSD (percent)

True RSD Analytical Sampling Between-target
% 5% 10% 15%

Number of
samples N

Observed
range

Observed
range

Observed
range

2 2.1–7.6 0.0–18.0 0.0–31.6
4 2.9–6.9 2.9–15.9 0.0–26.3
8 3.5–6.4 5.1–14.3 4.9–23.0
12 3.8–6.2 6.0–13.7 7.2–21.5
24 4.1–5.8 7.3–12.6 7.2–21.5
48 4.4–5.6 8.1–11.8 7.3–21.5

Example 2 RSD (percent)

True RSD Analytical Sampling Between-target
% 1% 10% 10%

Number of
samples N

Observed
range

Observed
range

Observed
range

2 0.4–1.5 2.2–17.6 0.0–23.0
4 0.6–1.4 4.2–15.5 0.0–18.7
8 0.7–1.3 5.8–14.0 0.0–16.1
12 0.8–1.2 6.6–13.4 1.2–14.9
24 0.8–1.2 7.6–12.3 2.7–14.8
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B—heterogeneity on a coarser scale—there is a greater potential
for duplicate samples to encompass areas of either high or low
contamination, tending towards larger within-sampling uncer-
tainty. Differences between duplicate samples would here range
from small to potentially large, but greater on average than in
Case A. Note also that the sample size—indicated on the
diagram by the size of increments—inuences the perception of
local heterogeneity. As the size of sampling footprint increases
in relation to the true scale of variation, the effect of local
heterogeneity will tend to decrease.
Perception and estimation of
uncertainty

The main issues emerge in a concrete form in the following
example. Suppose that the aim of a particular investigation is to
determine the concentration of zinc in an effluent discharge
over a period of a year. The interest is in both the average value
and the variability of zinc concentration. We can focus on
variability, since monitoring programmes that are adequate to
determine variability automatically provide a sound assessment
of average value. We can identify three sources of variation,
arising from (a) the imprecision of analysis, (b) uncertainty
from sampling (UfS) and (c) the variation in the effluent
composition itself. Imprecision of analysis is expressed as the
dispersion of the results when identical test portions are ana-
lysed. UfS is expressed as variation in the composition of
This journal is © The Royal Society of Chemistry 2014
samples taken at nominally the same place and time (i.e., within
a single target), but with due regard to randomisation. Variation
in the results from separate sampling events (e.g., on different
days) is simply the target-to-target variation. All of these can be
estimated together in a single experiment as part of the study of
UfS simply by duplication of both sampling and analysis on a
succession of targets, followed by analysis of variance (ANOVA).
Estimating the uncertainty
components

This leads us to the question of how best to design the experi-
ment, how to evaluate the overall measurement uncertainty
associated with different possible monitoring strategies and to
interpret their outcomes. Such preliminary estimates are of
great value in determining the optimum approach to sampling,
for instance whether to visit the effluent discharge many times
during the year, or to visit less frequently and take more
samples on each occasion.

In our example, the measurand is the average zinc concen-
tration of the sampling target (in this example, the ‘target’ is the
total quantity of effluent considered during a particular sampling
event). The best approach to the evaluation of UfS—in the
absenceofpriorknowledgeabout theunderlyingheterogeneity of
the effluent—is to take a number (N) of duplicate effluent
samples, say one pair of samples on each of N days spread out
though the year (note that it is assumed for the sake of this
example that there are no systematic changes in the measurand
or the quality of sampling and measurement over the period of
the investigation). Duplicate effluent samples are taken on the
sameday: practicality in visiting the sampling sitemeans that the
sampling procedure is effectively assigned this timescale. The
aim then would be to analyse each sample in duplicate.1 This
numberNof samplingevents, in this example visits to the effluent
discharge point, is critical in determining the condence interval
around the uncertainty estimates and the overall cost of the
operation; thehigher the valueofN, thebetter the estimateofUfS,
but also the greater the effort and the higher the cost.

Once the data are assembled, nested analysis of variance can
then be used to separate the effects of the three variable
factors—analytical, sampling, and day-to-day changes in the
effluent—expressed as standard deviations sa, ss, sd respectively.
These estimates can then be combined to give the uncertainty of
the chosen sampling programme.
Reliability of estimates of components
of variability

The question that remains involves the choice of the number N
and the consequent reliability of each standard deviation value.
Table 1 shows the 5th and 95th percentiles for estimates of each
standard deviation in simulations in which the true values of sa,
ss and sd were known. It was assumed that analytical and
sampling variations were normally distributed and day-to-day
variation was lognormal (of course, different situations might
justify alternative assumptions). A single estimate of each level
Anal. Methods, 2014, 6, 24–26 | 25
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of variability using N samples (as indicated in the tables) could
be expected to lie in the corresponding condence interval with
a probability of 0.9. Themain points to emerge from evaluations
of the power of tests of this type to determine variability are:

� the condence interval associated with estimates of uncer-
tainty canbewide, even fora relatively largenumberof targets (N).

� The three sources of variation interact to affect the range of
estimated values. The smaller the variance low in the hierarchy
(from analytical upwards), the more precise the estimate of the
next higher variance. Specically, excellent analytical precision
gives a smaller condence interval in ss. Good precision in
analysis and relatively low ss are both needed for precise
determination of sd. This makes it clear that to determine the
components of sampling uncertainty it is important to use as
precise a measurement technique as might be available—even
if it is not intended to use this technique for routine analysis.
Also, the estimation of sampling uncertainty using a measure-
ment technique that has a high relative standard deviation (say
>10%, a value which is not uncommon for some trace analytical
techniques), may produce measured values of uncertainty from
sampling that themselves have an unacceptably large con-
dence interval.

� A value of N less than 8 gives fairly imprecise estimates of
uncertainty. Given the fact that 4N analyses are required, a value
of N larger than about 12 not only leads to escalating costs of
testing, but also yields diminishing returns with respect to the
precision of the estimates of uncertainty that are obtained. This
suggests that N in the range 8 to 12 is likely to be a reasonable
choice, in the absence of data to the contrary.2

Caution: Valid interpretation of this type of experiment
depends on assuming a reasonably uniform analytical precision
and between-sampling precision, from target to target. If
successive targets vary widely in composition this assumption
may not be justiable, in which case a more complex statistical
approachwouldbe required, andexpert advice shouldbe sought.
26 | Anal. Methods, 2014, 6, 24–26
Conclusions

Randomly duplicated experiments in sampling provide the
information needed for the optimal design of a monitoring
programme. The optimal number of successive targets to be
sampled in such a study probably lies in the range 8 to 12.
However, it is essential that the distinctions between (a) the
sampling target, (b) the random sample, and (c) the increments
that comprise the sample, are clear from the outset.
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