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Rogues and Suspects: How to Tackle Outliers 
 
Analytical scientists, and indeed everyone involved in 
quantitative studies, know that it is usually necessary 
to make replicate measurements in order to 
characterise the random variations that inevitably 
occur. They also know that when such replicates are 
performed, it is not uncommon to find that one (or 
more) of the results seems not to agree with the rest. 
Proper treatment of such suspect values is an area of 
great importance. 
 
 
Some Simple Examples 
Suppose four titrations are performed, using the same 
equipment, reagents, and manipulative techniques to 
ensure that the results are as repeatable as possible.  Quite 
often we shall find that three of the results are in close 
agreement, but the fourth is rather different (Figure 1a). If 
we cannot simply explain the discrepancy (because of 
faulty equipment, technique, or data recording) we must 
decide whether it is permissible to reject the fourth value 
as an outlier before calculating the mean and standard 
deviation of the results, using them in significance tests 
etc, or whether we must utilise all the values, including 
the suspect one. In a separate, but very common, type of 
experiment we might use eight reference materials to 
yield a calibration graph for an instrumental analysis. We 
may then find that seven of the resulting measurements 
lie close to a straight line or smooth curve, while the 
eighth value is inexplicably out of line. The same 
question arises: can we reject this eighth value as an 
outlier before calculating the best straight line or curve, or 
must we include it?  
 
 

Figure 1.  Examples of dot-plots of replicated results. Medians, 
where relevant, are denoted by arrows. 
 

This problem of suspect values can arise in any area of 
analytical measurement, such as the results of proficiency 
testing schemes and of method performance studies 
(collaborative trials). Suspect values may also be seen in 
multivariate measurements. The problems they pose in 
theory and in practice are clear if we re-examine the 
titration example. As every effort was made to ensure that 
the titrations were repeatable, we would expect the results 
to form a sample from a (hypothetically infinite) 
population with a normal (Gaussian) error distribution. 
There is thus a finite chance that an entirely valid single 
measurement might be substantially different from the 
sample mean. Does this imply that we can never reject 
suspect values? Probably not, though it is certainly true 
that, for small samples, one measurement must be very 
different indeed from the rest before it can be considered 
as an outlier. If suspect values are needlessly retained, 
measurement quality suffers, while if they are wrongly 
rejected we may be guilty of adjusting the data, perhaps 
subconsciously, to fit our preconceived idea of what the 
results should be - a misdemeanour of which scientific 
giants such as Isaac Newton, Gregor Mendel and Robert 
Millikan, amongst many others, have been accused! 
 
Another aspect of handling suspect values is that the 
dictum “if in doubt, take more measurements” may not 
help. If we perform our titration ten times, it is possible 
that eight of the results will agree closely, the other two 
being suspect. Both the latter may be higher than the rest 
of the values (Figure 1b), both lower, or one higher and 
one lower! So any satisfactory method of handling 
suspect values must also be able to deal with multiple 
instances. 
 
Initial Data Analysis (IDA) 
Simple IDA methods can provide much commonsense 
guidance in this area. The human eye-brain combination 
detects patterns and trends much more easily in graphical 
form than when the data are presented as a list of 
numbers. So calibration and other graphs should always 
be inspected visually, and dot-plots such as those in 
Figure 1, in which each measurement is represented by a 
dot on a linear scale, provide simple graphical summaries 
of replicate data. Very simple situations (Figure 1a) may 
not gain much from graphical presentation, but for larger 
data sets, such as those in Figure 1b (two outliers?) and 
Figure 1c (possibly a skewed error distribution, so the 
highest value may not be an outlier) dot-plots often 
highlight features that would not otherwise be so 
apparent. 
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 Significance tests for outliers 
In datasets where suspect values have arisen, several 
approaches to their treatment have been used. The most 
obvious and perhaps still the most popular is to apply a 
significance test. Several tests have been developed for 
this purpose. Each is used in the conventional way. First a 
null hypothesis (H0) is established; in this case H0 will be 
that the suspect value (here we assume there is just one) is 
not an outlier, that is, that the whole dataset resembles a 
random sample from a single population. Then the 
probability of obtaining the actual experimental results 
under H0 is found, and if this probability is low (often 
p<0.05) then H0 is rejected, that is, the suspect value can 
be rejected as an outlier. The key probability is found 
using a simple equation to convert the experimental data 
into a test statistic. The equation depends on the test 
chosen, but it usually compares the proximity of the 
suspect value to the rest of the data with some measure of 
the overall spread of the data (the latter to include the 
suspect value because H0 assumes it is not an outlier). For 
replicate measurements the best-known tests are those of 
Dixon and Grubbs: those and other tests will be described 
in more detail in future Technical Briefs. The main 
problem with outlier tests is that, to find the probability 
that the experimental data will occur, we have to make an 
assumption about the error distribution of the population 
from which the data sample comes. Usually it is assumed 
that this distribution is normal so, if this is not the case, 
misleading conclusions can result from the test. For 
example a value that is an apparent outlier on the 
assumption of a normal distribution may not be an outlier 
if the distribution is in fact log-normal. Outlier tests are 
also complicated (though not unusable) in the presence of 
two or more outliers (Figure 1b). Significance tests are 
also used to tackle outliers in other situations; for 
example Cochran’s test is used to identify unusual group 
variances in Analysis of Variance (ANOVA) methods. 
 
Median-based methods 
A second approach to the problem of suspect values is to 
use median-based methods. The median of a data sample 
is found by putting the values in numerical order. If the 
number of measurements is odd the median is the middle 
value of the ordered sample; if there is an even number of 
values it is the mean of the two middle ones. The median 
is obviously unaffected by the values at the extremes of 
the data sample (see Figures 1a. and b.), so in some cases 
it may be a more sensible measure of central tendency 
than the mean. Equally, entirely valid data that contribute 
to the calculation of the mean do not affect the value of 
the median, so the mean is a better measure if outliers are 
not suspected. The median can also be used to provide a 
measure of the spread of the data through the median 
absolute deviation (MAD!). This is obtained by finding 
the magnitude (that is, without regard to + or - signs) of 
the deviation of each individual value in the sample from 
the sample median, and then the median of these 
deviations. The MAD forms the basis of another possible 
outlier test: if an individual result differs in magnitude 
from the sample median by more than 5 times the MAD it 
is a candidate for rejection. The MAD is also used in 
robust statistics (see below). Other median-based methods 

have not been much used in the analytical sciences, 
though one provides the basis of a good method for 
calculating regression lines when outliers are suspected; 
this will also be described in a later Technical Brief. 
 
Robust statistics 
In recent years the favoured approach to the treatment of 
data containing suspect measurements has been the use of 
robust statistics (see Technical Brief 6), which work well 
when the data come from distributions that are not greatly 
different from the normal distribution. They are 
particularly suitable when there are suspect values, and 
also when the distribution of errors is heavy-tailed, that is, 
it is symmetrical, but with more values than expected that 
differ substantially from the mean. These two situations 
are clearly linked, though heavy-tailed data do not always 
contain outliers: they may arise from the overlaying of 
several normal distributions with similar means but with 
different variances, for example if measurements of a 
particular material are made using different techniques. 
The key feature of robust methods is that they avoid the 
question of accepting or rejecting doubtful values by 
reducing their weights (that is, the importance given to 
them in calculating statistics). Many robust methods are 
iterative, and their popularity reflects the fact that they are 
now easily implemented through simple software.  
 
A simple example of the approach is provided by a 
process called winsorisation. This term covers a range of 
methods, but in a simple version the residuals of the 
measurements at the high and low ends of the data (that 
is, the differences between the values and the mean or 
median) are reduced so that they become the same as the 
next largest positive and negative ones. In effect the 
highest and lowest measurements have been shifted to 
become the same as the next highest and lowest ones! 
Obviously if there are no outliers at either end of the 
sample range, this adjustment will make only modest 
differences to the mean and standard deviation; but if 
such outliers do occur, their influence on the mean and 
standard deviation will be reduced. Such methods seem at 
first to involve unjustifiable interference with the raw 
data, but in practice robust methods work well in a range 
of measurement situations, and would probably be even 
more used if suitable software was widely available. 
 
J N Miller 
 
This Technical Brief was prepared for the Analytical 
Methods Committee by the Statistical Subcommittee 
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