Glossary


Allotropes
Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.


For more information on the Visual Elements image see the Uses and properties section below.

 

Glossary


Group
A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).


Atomic number
The number of protons in an atom.


Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.


Melting point
The temperature at which the solid–liquid phase change occurs.


Boiling point
The temperature at which the liquid–gas phase change occurs.


Sublimation
The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.


Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.


Isotopes
Atoms of the same element with different numbers of neutrons.


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.


Fact box

Group 17  Melting point −219.67°C, −363.41°F, 53.48 K 
Period Boiling point −188.11°C, −306.6°F, 85.04 K 
Block Density (g cm−3) 0.001553 
Atomic number Relative atomic mass 18.998  
State at 20°C Gas  Key isotopes 19
Electron configuration [He] 2s22p5  CAS number 7782-41-4 
ChemSpider ID 4514530 ChemSpider is a free chemical structure database
 

Glossary


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Appearance

The description of the element in its natural form.


Biological role

The role of the element in humans, animals and plants.


Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The image reflects the highly reactive nature of the element.
Appearance
A very pale yellow-green, dangerously reactive gas. It is the most reactive of all the elements and quickly attacks all metals. Steel wool bursts into flames when exposed to fluorine.
Uses
There was no commercial production of fluorine until the Second World War, when the development of the atom bomb, and other nuclear energy projects, made it necessary to produce large quantities. Before this, fluorine salts, known as fluorides, were for a long time used in welding and for frosting glass.

The element is used to make uranium hexafluoride, needed by the nuclear power industry to separate uranium isotopes. It is also used to make sulfur hexafluoride, the insulating gas for high-power electricity transformers.

In fact, fluorine is used in many fluorochemicals, including solvents and high-temperature plastics, such as Teflon (poly(tetrafluoroethene), PTFE). Teflon is well known for its non-stick properties and is used in frying pans. It is also used for cable insulation, for plumber’s tape and as the basis of Gore-Tex® (used in waterproof shoes and clothing).

Hydrofluoric acid is used for etching the glass of light bulbs and in similar applications.

CFCs (chloro-fluoro-carbons) were once used as aerosol propellants, refrigerants and for ‘blowing’ expanded polystyrene. However, their inertness meant that, once in the atmosphere, they diffused into the stratosphere and destroyed the Earth’s ozone layer. They are now banned.
Biological role
Fluoride is an essential ion for animals, strengthening teeth and bones. It is added to drinking water in some areas. The presence of fluorides below 2 parts per million in drinking water is believed to prevent dental cavities. However, above this concentration it may cause children’s tooth enamel to become mottled. Fluoride is also added to toothpaste.

The average human body contains about 3 milligrams of fluoride. Too much fluoride is toxic. Elemental fluorine is highly toxic.
Natural abundance
The most common fluorine minerals are fluorite, fluorspar and cryolite, but it is also rather widely distributed in other minerals. It is the 13th most common element in the Earth’s crust.

Fluorine is made by the electrolysis of a solution of potassium hydrogendifluoride (KHF2) in anhydrous hydrofluoric acid.
  Help text not available for this section currently

History

The early chemists were aware that metal fluorides contained an unidentified element similar to chlorine, but they could not isolate it. (The French scientist, André Ampère coined the name fluorine in 1812.) Even the great Humphry Davy was unable to produce the element, and he became ill by trying to isolate it from hydrofluoric acid.

The British chemist George Gore in 1869 passed an electric current through liquid HF but found that the gas which was liberated reacted violently with his apparatus. He thought it was fluorine but was unable to collect it and prove it. Then in 1886 the French chemist Henri Moissan obtained it by the electrolysis of potassium bifluoride (KHF2) dissolved in liquid HF.
 
Glossary

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.


Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.


Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.


Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.


First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 1.47 Covalent radius (Å) 0.60
Electron affinity (kJ mol−1) 328.165 Electronegativity
(Pauling scale)
3.98
Ionisation energies
(kJ mol−1)
 
1st
1681.045
2nd
3374.17
3rd
6050.441
4th
8407.713
5th
11022.755
6th
15164.128
7th
17867.734
8th
92038.447
 
Glossary

Bond enthalpy (kJ mol−1)
A measure of how much energy is needed to break all of the bonds of the same type in one mole of gaseous molecules.

Bond enthalpies

Covalent bond Enthalpy (kJ mol−1) Found in
F–F 155 F2
C–F 485 CF4
H–F 565 HF
 

Glossary


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Isotopes

Atoms of the same element with different numbers of neutrons.


Key for isotopes


Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states -1
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  19F 18.998 100
 

Glossary

Data for this section been provided by the British Geological Survey.


Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.


Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.


Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


Substitutability

The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact


Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.


Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.


Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.


Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.


Supply risk

Relative supply risk 6.7
Crustal abundance (ppm) 553
Recycling rate (%) Unknown
Substitutability High
Production concentration (%) 56
Reserve distribution (%) 17
Top 3 producers
  • 1) China
  • 2) Mexico
  • 3) Mongolia
Top 3 reserve holders
  • 1) South Africa
  • 2) Mexico
  • 3) China
Political stability of top producer 24.1
Political stability of top reserve holder 44.3
 

Glossary


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.


Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
824 Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently

Podcasts

Listen to Fluorine Podcast
Transcript :

Chemistry in its element: fluorine


(Promo)

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

This week, a strong acid it's not, but deadly it definitely is.

Kira J. Weissman

The 37-year old technician spilled only a few hundred milliliters or so in his lap during a routine palaeontology experiment. He took the normal precaution in such situations, quickly dowsing himself with water from a laboratory hose, and even plunged into a nearby swimming pool while the paramedics were en route. But a week later, doctors removed a leg, and a week after that, he was dead. The culprit: hydrofluoric acid (colloquially known as HF), and the unfortunate man was not its first victim.

Unlike its close relatives, hydrochloric and hydrobromic acid, HF is a weak acid. This, coupled with its small molecular size, allows it to penetrate the skin and migrate rapidly towards the deeper tissue layers. Once past the epidermis, HF starts to dissociate, unleashing the highly-reactive fluoride ion. Free fluoride binds tightly to both calcium and magnesium, forming insoluble salts which precipitate into the surrounding tissues. Robbed of their co-factors, critical metabolic enzymes can no longer function, cells begin to die, tissues to liquefy and bone to corrode away. And if calcium loss is rapid enough, muscles such as the heart stop working. Burns with concentrated HF involving as little as 2.5% of the body surface area - the size of the sole of the foot, for example - have been fatal.

HF has a long history of destructive behaviour, claiming the lives of several chemists in the 1800s, including the Belgian Paulin Louyet, and the Frenchman Jérôme Nicklès. These brave scientists were battling to be the first to isolate elemental fluorine (F2) from its various compounds, using electrolysis. However, it was Nicklès' countrymen, Henri Moissan, who succeeded in 1886. To achieve this feat, Moissan not only had to contend with HF - the preferred electrolyte in such experiments - but fluorine itself, a violently reactive gas. His key innovation was to construct an apparatus out of platinum, one of the few metals capable of resisting attack, while cooling the electrolytic solution down to -50 °C to limit corrosion. Moissan's feat earned him the 1906 Nobel Prize in chemistry, but the celebration was short-lived. Another victim of fluorine's toxic effects, he died only two months later. Yet Moissan's method lived on, and is used today to produce multi-ton quantities of fluorine from its ore fluorspar.

Ironically, while elemental fluorine is decidedly bad for your health, fluorine atoms turns up in some 20% of all pharmaceuticals. The top-selling anti-depressant Prozac, the cholesterol-lowering drug Lipitor, and the antibacterial Cipro, all have fluorine to thank for their success. How is this possible? Because the flip side of fluorine's extreme reactivity is the strength of the bonds it forms with other atoms, notably including carbon. This property makes organofluorine compounds some of the most stable and inert substances known to man. Fluorine's special status also stems from the 'fluorine factor', the ability of this little atom to fine-tune the chemical properties of an entire molecule. For example, replacing hydrogen with fluorine can protect drugs from degradation by metabolic enzymes, extending their active lifetimes inside the body. Or the introduced fluorine can alter a molecule's shape so that it binds better to its target protein. Such precise chemical tinkering can now be carried out in pharmaceutical labs using an array of safe, commercially-available fluorinating agents, or the tricky transformations can simply be out-sourced to someone else.

Most of us also have fluorine to thank for our beaming smiles. The cavity-fighting agents in toothpaste are inorganic fluorides such as sodium fluoride and sodium monofluorophosphate. Fluoride not only decreases the amount of enamel-dissolving acid produced by plaque bacteria, but aids in the tooth rebuilding process, insinuating itself into the enamel to form an even harder surface which resists future attack. And the list of medical applications doesn't stop there. Being put to sleep is a little bit less worrisome thanks to fluorinated anaesthetics such as isoflurane and desflurane, which replaced flammable and explosive alternatives such as diethyl ether and chloroform. Fluorocarbons are also one of the leading candidates in development as artificial blood, as oxygen is more soluble in these materials than most other solvents. And radioactive fluorine (18F rather than the naturally-occurring 19F) is a key ingredient in positron emission tomography (or PET), a whole-body imaging technique that allows cancerous tumours to be discovered before they spread.

Fluorochemicals are also a mainstay of industry. One of the most famous is the polymer polytetrafluoroethylene, better known as Teflon, which holds the title of world's most slippery solid. Highly thermostable and water proof, it's used as a coating for pots and pans, in baking sprays, and to repel stains on furniture and carpets. Heating and stretching transforms Teflon into Gore-tex, the porous membrane of sportswear fame. Gore-tex's pores are small enough to keep water droplets out, while allowing water vapour (that is, sweat) to escape. So you can run on a rainy day, and still stay dry. Fluorine plays another important role in keeping you cool, as air-conditioning and household refrigeration units run on energy-efficient fluorocarbon fluids. And fluorine's uses are not limited to earth. When astronauts jet off into space they put their trust in fluoroelastomers, a type of fluorinated rubber. Fashioned into O-rings and other sealing devices, these materials ensure that aircraft remain leak-free even under extreme conditions of heat and cold. And when accidents do happen, space travellers can rely on fluorocarbon-based fire extinguishers to put the flames out.

Fluorine has long been known as the 'tiger of chemistry'. And while the element certainly retains its wild side, we can reasonably claim to have tamed it. As only a handful of naturally-occurring organofluorine compounds have ever been discovered, some might argue that we now make better use of fluorine than even Nature herself.

Chris Smith

So Teflon is acknowledged as the world's most slippery thing and I bet there are one or two politicians knocking around who are thanking fluorine for that. Thank you also to Kira Weismann from Zaarland University in Germany. Next week.ouch

Steve Mylon

I cannot imagine that this is all someone would be saying if they were unfortunate enough to be stricken with the disease of the same name. The ouch-ouch disease.

The disease results from excessive cadmium poisoning and was first reported in a small town about 200 miles north west of Tokyo. Rice grown in cadmium contaminated soils had more than 10 times the cadmium content than normal rice. The ouch-ouch-ness of this disease resulted from weak and brittle bones subject to collapse due to high porosity.

Chris Smith

And you can find out about the ouch-ouch factor with Steve Mylon when he uncovers the story of cadmium on next week's Chemistry in Its Element. I'm Chris Smith, thank you for listening and goodbye.

(Promo)

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements.

(End promo)
  Help text not available for this section currently
  Help Text

Resources

Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

Visual Elements images and videos
© Murray Robertson 1998-2017.

 

Data

W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.

 

Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.

 

Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.

 

History text

Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.

 

Podcasts

Produced by The Naked Scientists.

 

Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.