Issue 8, 2009

Potentiometric enzyme immunoassay using miniaturized anion-selective electrodes for detection

Abstract

An enzyme-linked immunosorbent assay (ELISA) for prostate specific antigen (PSA) detection in human serum was developed based on the potentiometric detection of 6,8-difluoro-4-methylumbelliferone (DiFMU). The assays were carried out in anti-human PSA capture antibody modified microtiter plates (150 µL volume). After incubation in the PSA-containing serum samples, β-galactosidase-labeled PSA tracer antibody was added. The β-galactosidase label catalyzed the hydrolysis of 6,8-difluoro-4-methylumbelliferyl-β-D-galactopyranoside (DiFMUG) and the resulting DiFMU anion was detected by potentiometric microelectrodes with anion-exchanger membrane. The selectivity of the anion-exchanger electrode is governed by the lipophilicity of the anions in the sample. Since DiFMU is much more lipophilic (log P = 1.83) than any of the inorganic anions normally present in the working buffers and occurs in its anionic form at the physiological pH (pKa = 4.19), it was chosen as the species to be detected. The potentiometric ELISA-based method detects PSA in serum with a linear concentration range of 0.1–50 ng/mL. These results confirm the applicability of potentiometric detection in diagnostic PSA assays. Owing to simple methodology and low cost, potentiometric immunoassays seem to offer a feasible alternative to the development of in vitro diagnostic platforms.

Graphical abstract: Potentiometric enzyme immunoassay using miniaturized anion-selective electrodes for detection

Article information

Article type
Paper
Submitted
03 Mar 2009
Accepted
26 May 2009
First published
12 Jun 2009

Analyst, 2009,134, 1601-1607

Potentiometric enzyme immunoassay using miniaturized anion-selective electrodes for detection

J. Szűcs, E. Pretsch and R. E. Gyurcsányi, Analyst, 2009, 134, 1601 DOI: 10.1039/B904321G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements