Issue 37, 2009

A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles

Abstract

Controlled Pt adlayers were deposited on commercial Ru nanoparticles (NPs) using an industrially scalable one-pot ethylene glycol (EG) reduction based method and were characterized by X-ray diffraction (XRD), electrochemical (EC) CO stripping voltammetry, inductively-coupled plasma optical emission spectrometry (ICP-OES), X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM). Compared with the previously used “spontaneous deposition”, the wet chemistry-based EG method is less technically demanding, i.e. no need to handle high-temperature hydrogen reduction, offers a better control of the Pt packing density (PD), enables the formation of stable, segregated Pt surface adlayers for optimal tuning and use of Pt, and effectively prevents NPs sintering. Two batches of a total of 11 (8 vs. 3) samples with different values of Pt PD ranging from 0.05 to 0.93 were prepared, with a time interval of more than 18 months between the sytheses of the two batches of samples, and an excellent reproducibility of results was observed. All samples were investigated in terms of methanol (MeOH) electro-oxidation (EO) by cyclic voltammetry (CV) and chronoamperometry (CA). Although the peak current of CV increased as the Pt content increased, the long-term steady-state MeOH electro-oxidation current density of the Pt-decorated Ru NPs measured by CA showed a volcano curve as a function of the Pt PD, with the maximum appearing at the PD of 0.31. The optimal peak activity was ∼150% higher than that of the industrial benchmark PtRu (1 : 1) alloy NPs and could deliver the same performance at half the electrode material cost. Fundamentally, such a volcano curve in the reaction current is the result of two competing processes of the EO of MeOH: the triple dehydrogenation of MeOH that prefers more Pt ensemble sites, and the elimination of poisonous CO that is enhanced by more adjacent Ru/Pt sites via the so-called bifunctional mechanism and also by possible electronic effects at low Pt coverages.

Graphical abstract: A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
22 Sep 2008
Accepted
26 May 2009
First published
26 Jun 2009

Phys. Chem. Chem. Phys., 2009,11, 8231-8239

A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles

B. Du, S. A. Rabb, C. Zangmeister and Y. Tong, Phys. Chem. Chem. Phys., 2009, 11, 8231 DOI: 10.1039/B816531A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements