Issue 15, 2009

Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level

Abstract

Nanoparticles can catalyze many important chemical transformations in organic synthesis, pollutant removal, and energy production. Characterizing their catalytic properties is essential for understanding the fundamental principles governing their activities, but is challenging in ensemble measurements due to their intrinsic heterogeneity from their structural dispersions, heterogeneous surface sites, and surface restructuring dynamics. To remove ensemble averaging, we recently developed a single-particle approach to study the redox catalysis of individual Au-nanoparticles in solution. By detecting the fluorescence of the catalytic product at the single-molecule level, we followed the catalytic turnovers of single Au-nanoparticles in real time at single-turnover resolution. Here we extend our single-nanoparticle studies to examine in detail the activity and heterogeneity of 6 nm spherical Au-nanoparticles. By analyzing the statistical properties of single-particle reaction waiting times across a range of substrate concentrations, we directly determine the distributions of kinetic parameters of individual Au-nanoparticles, including the rate constants and the equilibrium constants of substrate adsorption, and quantify their heterogeneity. Large activity heterogeneity is observed among the Au-nanoparticles in both the catalytic conversion reaction and the product dissociation reaction, which are typically hidden in ensemble-averaged measurements. Analyzing the temporal fluctuation of catalytic activity of individual Au-nanoparticles further reveals that these nanoparticles have two types of surface sites with different catalytic properties—one type-a with lower activity but higher substrate binding affinity, and the other type-b with higher activity but lower substrate binding affinity. Each Au-nanoparticle exhibits type-a behavior at low substrate concentrations and switches to type-b behavior at a higher substrate concentration, and the switching concentration varies largely from one nanoparticle to another. The heterogeneous and dynamic behavior of Au-nanoparticle catalysts highlight the intricate interplay between catalysis, structural dispersion, variable surface sites, and surface restructuring dynamics in nanocatalysis.

Graphical abstract: Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level

Article information

Article type
Paper
Submitted
10 Nov 2008
Accepted
21 Jan 2009
First published
16 Feb 2009

Phys. Chem. Chem. Phys., 2009,11, 2767-2778

Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level

W. Xu, J. S. Kong and P. Chen, Phys. Chem. Chem. Phys., 2009, 11, 2767 DOI: 10.1039/B820052A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements