Issue 15, 2007

Hydrogen storage in nanoporous carbon materials: myth and facts

Abstract

We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H2 m−3) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H2 m−3. The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H2 m−3. All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of “clean” energy.

Graphical abstract: Hydrogen storage in nanoporous carbon materials: myth and facts

Article information

Article type
Invited Article
Submitted
22 Dec 2006
Accepted
09 Mar 2007
First published
23 Mar 2007

Phys. Chem. Chem. Phys., 2007,9, 1786-1792

Hydrogen storage in nanoporous carbon materials: myth and facts

P. Kowalczyk, R. Hołyst, M. Terrones and H. Terrones, Phys. Chem. Chem. Phys., 2007, 9, 1786 DOI: 10.1039/B618747A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements