Issue 17, 2005

Substituent effects and the mechanism of alkene metathesis catalyzed by ruthenium dichloride catalysts

Abstract

Density functional theory calculations are reported concerning the dissociative mechanism for alkene metathesis by ruthenium dichloride catalysts, including both bisphosphine and diaminocarbene/phosphine complexes. The calculations use a hierarchy of models, ranging from [(L)(PH3)Ru(Cl)2(CH2)] (L = PH3 or diaminocarbene) through the larger [(L)(PMe3)Ru(Cl)2(CHPh)] to the “real” [(L)(PCy3)Ru(Cl)2(CHPh)]. Calculations show that the rate-limiting step for metathesis is either ring closing from an alkene complex to form a ruthena-cyclobutane, or ring-opening of the latter intermediate to form an isomeric alkene complex. The higher efficiency of the diaminocarbene based catalysts is due to the stabilization of the formal +IV oxidation state of the ruthenium centre in the metallacycle. This effect is partly masked in the smaller model systems due to a previously unnoticed stereoelectronic effect. The calculations do not reproduce the experimental observation whereby the initiation step, phosphine dissociation, is more energetically demanding and hence slower for the diaminocarbene-containing catalyst system than for the bisphosphine. Further calculations on the corresponding bond energies using a variety of DFT and hybrid DFT/molecular mechanics methods all find instead a larger phosphine dissociation energy for the bisphosphine catalyst. This reversed order of binding energies would in fact be the one expected based on the stronger trans influence of the diaminocarbene ligand. The discrepancy with experiment is small and could have a number of causes which are discussed here.

Graphical abstract: Substituent effects and the mechanism of alkene metathesis catalyzed by ruthenium dichloride catalysts

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2005
Accepted
27 Jun 2005
First published
20 Jul 2005

Dalton Trans., 2005, 2849-2858

Substituent effects and the mechanism of alkene metathesis catalyzed by ruthenium dichloride catalysts

A. C. Tsipis, A. G. Orpen and J. N. Harvey, Dalton Trans., 2005, 2849 DOI: 10.1039/B506929G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements