Issue 9, 2001

Abstract

Efficient syntheses are reported for tetraiodotetrathiafulvalene 2, 4-iodo-5-methyl-4′,5′-bis(methylsulfanyl)TTF 3, and 4-iodo-4′,5′-bis(methylsulfanyl)TTF 4 by iodination, using perfluorohexyl iodide, of lithiated derivatives of the corresponding TTF system. Bromination and chlorination of lithiotrimethylTTF using 1,2-dibromotetrafluoroethane and hexachloroethane gave 4-bromo- and 4-chloro-4′,5,5′-trimethylTTF 6 and 7, respectively. Phosphite-induced self-coupling or cross-coupling reactions of 4-iodo-1,3-dithiole-2-thione or 4,5-diiodo-1,3-dithiole-2-thione(one) half-units resulted in TTF derivatives with partial loss of the iodine substituent(s). 4,5-Dibromo-4′,5′-bis(cyanoethylsulfanyl)TTF 15 was prepared by cross-coupling methodology, and converted into 4,5-dibromo-4′,5′-bis(methylsulfanyl)TTF 16 by reaction with caesium hydroxide and then methyl iodide. EPR data are reported for the electrochemically generated cation radicals of trimethylTTFX derivatives (X = I, Br and Cl) 5–7, respectively. For the neutral donors, the X-ray crystal structures are reported for 2, 5, 6, tetramethylTTF 8 and 15. Structure 2 is characterised by a particularly dense packing with continuous chains of intra-stack I⋯I contacts (4.17–4.19 Å). The crystals of 6 and 8 are isomorphous, while the structure of 5 is different. The iodo-substituent in 5 affects the packing in a way the bromo-substituent in 6 does not, due to differences in specific interactions rather than steric demands of I and Br, which are similar. Structure 15 comprises face-to-face dimers with inter-dimer Br⋯Br (3.57 Å) and Br⋯S (3.55 Å) contacts: a remarkable difference in bond distances between the Br and S-substituted dithiole rings is observed. The 1 ∶ 1 charge-transfer (CT) complexes 3·TCNQ and 4·TCNQ (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane, 17) display mixed stair-like stacks of alternating D and A moieties: the overall degree of CT is estimated from bond length analysis to be 0.2 e and 0.3 e, respectively. In 3·TCNQ either position of the disordered iodine atom has one short (inter-stack, but intra-layer) contact with a cyano group (I⋯N distances of 3.14 and 3.18 Å). In 4·TCNQ a similar I⋯N contact is much longer (3.35 Å). In the structure of 5I3·½I2 the cation radical is disordered; dimeric cation radicals display short intra-dimer contacts (S⋯S 3.38–3.39 Å, C⋯C 3.35 Å) consistent with electron coupling. Each dimer is surrounded by four I3 anions. The crystal structure of 16I3 is comprised of layers with interplanar separations of 3.55 Å. Cations of one layer overlap with anions of the next, and the packing can be described as mixed stacks parallel to the a axis. The remarkably high conductivity of this salt for a system of 1 ∶ 1 stoichiometry (σrt = 8 × 10−2 S cm−1) is ascribed to partial charge transfer (the charge on the TTF moiety is estimated as +⅔ from bond length analysis) and a continuous system of short non-bonding contacts.

Graphical abstract: Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2001
Accepted
22 May 2001
First published
11 Jul 2001

J. Mater. Chem., 2001,11, 2181-2191

Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts

A. S. Batsanov, M. R. Bryce, A. Chesney, J. A. K. Howard, D. E. John, A. J. Moore, C. L. Wood, H. Gershtenman, J. Y. Becker, V. Y. Khodorkovsky, A. Ellern, J. Bernstein, I. F. Perepichka, V. Rotello, M. Gray and A. O. Cuello, J. Mater. Chem., 2001, 11, 2181 DOI: 10.1039/B101866N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements