Issue 7, 2010

Adsorption of star polymers: computer simulations

Abstract

The behaviour of star polymers adsorbed on smooth surfaces is studied using coarse-grained bead-spring models and Langevin dynamics simulations. The conformational properties of a single adsorbed star polymer in good-solvent conditions are considered as functions of the functionality (number of arms) f, the number of monomers per arm N, and the monomer-surface interaction energy εs. Four conformational regimes are identified: a linear-polymer regime; a two-dimensional star polymer regime; a sombrero regime; and a colloidal regime. The latter three correspond to regimes predicted theoretically by Halperin and Joanny [J. Phys. II (France), 1991, 1, 623–636]. Solvent effects are explored by dialing in effective attractions between the monomer beads; with decreasing solvent quality, the star polymers adopt more compact, globular structures. Good-solvent to bad-solvent quenches at finite surface coverages are considered; these correspond to established experimental protocols for adsorbing and then drying polymer sub-monolayers on surfaces. The structure of the polymer film is surveyed as a function of surface coverage, f, N, and εs, in good-solvent and bad-solvent conditions. The simulated post-quench structures are in good qualitative agreement with those observed in atomic-force microscopy measurements, while the simulated pre-quench structures shed light on the microscopic mechanisms of film formation. This study draws together much of what is known about surface-adsorbed star polymers from theory, simulation, and experiment.

Graphical abstract: Adsorption of star polymers: computer simulations

Article information

Article type
Paper
Submitted
03 Nov 2009
Accepted
05 Jan 2010
First published
08 Feb 2010

Soft Matter, 2010,6, 1483-1493

Adsorption of star polymers: computer simulations

A. Chremos, P. J. Camp, E. Glynos and V. Koutsos, Soft Matter, 2010, 6, 1483 DOI: 10.1039/B922988D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements