Electronic Supplementary Information (ESI) for Chemical Communication Icosahedral \mathbf{B}_{12}-Containing Core-Shell Structures of $\mathbf{B}_{\mathbf{8 0}}$

Hui Li, ${ }^{a}$ Nan Shao, ${ }^{a}$ Bo Shang, ${ }^{b}$ Lan-Feng Yuan, ${ }^{b}{ }^{b}$ Jinlong Yang, ${ }^{b}$ and Xiao Cheng Zeng, * ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588,
E-mail: xczeng@phase2.unl.edu
${ }^{\mathrm{b}}$ Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China, 230026.
E-mail: yuanlf@ustc.edu.cn

Figure SI-1. MD snapshots of $I_{\mathrm{h}}-\mathrm{B}_{12}$ containing B_{80} in several time stages of MD simulation and at 1000 $\mathrm{K}, 1500 \mathrm{~K}$ and 2000 K , respectively.

Figure SI-2. (A) Root mean squared distances (RMSDs) of $I_{h}-\mathrm{B}_{12}$ containing B_{80} at different temperatures. (B) RMSDs of outer shell and inner core at 1500 K. (C) Radial distribution functions (RDFs) and (D) B-B pair distribution functions (PDFs) at various temperatures. In computing RDFs, the centre of icosahedral B_{12} core is set as the origin of the coordinate

Figure SI-3. (A) Structures and relative energies (in eV), calculated at TPSS/6-311G(2d) //PBE/GTHDZVP level, of the top 6 low-lying isomers A1-A6. Energy of the A1 is set as zero, and the icosahedral B_{12} cores are highlighted in red. The relative energy between A1 and A6, calculated by MP2/6-31G(d)//PBE/GTH-DZVP level, is given in parenthesis. (B) Distribution of B-B bond lengths of A1-A6, and that of the fullerene B_{80}.

