Electronic Supplementary Information (ESI) for Chemical Communication

Icosahedral B₁₂-Containing Core-Shell Structures of B₈₀

Hui Li,^a Nan Shao,^a Bo Shang,^b Lan-Feng Yuan,^{* b} Jinlong Yang,^b and Xiao Cheng Zeng,^{* a}

 ^a Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, E-mail: <u>xczeng@phase2.unl.edu</u>
^b Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China, 230026. E-mail: <u>yuanlf@ustc.edu.cn</u>

Figure SI-1. MD snapshots of I_h -B₁₂ containing B₈₀ in several time stages of MD simulation and at 1000 K, 1500 K and 2000 K, respectively.

Figure SI-2. (A) Root mean squared distances (RMSDs) of I_h -B₁₂ containing B₈₀ at different temperatures. (B) RMSDs of outer shell and inner core at 1500 K. (C) Radial distribution functions (RDFs) and (D) B-B pair distribution functions (PDFs) at various temperatures. In computing RDFs, the centre of icosahedral B₁₂ core is set as the origin of the coordinate

Figure SI-3. (A) Structures and relative energies (in eV), calculated at TPSS/6-311G(2d) //PBE/GTH-DZVP level, of the top 6 low-lying isomers A1-A6. Energy of the A1 is set as zero, and the icosahedral B_{12} cores are highlighted in red. The relative energy between A1 and A6, calculated by MP2/6-31G(d)//PBE/GTH-DZVP level, is given in parenthesis. (B) Distribution of B-B bond lengths of A1-A6, and that of the fullerene B_{80} .