Rhodamine-sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water

Young-Keun Yang,*a,b Soyoung Shim*a and Jinsung Tae*ac

*aDepartment of Chemistry, Yonsei University, Seoul, 120-749 Korea, Fax: +82) 2-364-7050; Tel: +82) 2-2123-2603; E-mail: jstae@yonsei.ac.kr
bPresent address: Department of Chemistry, Stanford University, Stanford, California 94305-5080

department of Chemistry, Yonsei University, Seoul, 120-749 Korea, Fax: +82) 2-364-7050; Tel: +82) 2-2123-2603; E-mail: jstae@yonsei.ac.kr

Table of Contents Page

1. Reagents and general methods S2
2. Synthesis of 1 from rhodamine-hydroxamic acid (2) S2
3. Reference S3
4. Fluorescence intensity changes of 1 with metal ions S4
5. UV-vis absorption changes of 1–Au⁺ with Cys S5
6. Fluorescence titration of 1–Au⁺ with Hcy S6
7. Effects of metal ions with Cys S7
8. Effects of 1–Au³⁺ ions with Cys S8
9. Effects of 1–Au⁺ with amino acids S9
10. Fluorescence spectra of 1–Au⁺ with propanethiol and thioglycolic acid S10
11. Fluorescence spectra of 1 with amino acids (Asp, Glu, GSH) S11
12. Fluorescence spectra of 1–amino acids with NaHCO₃ S12
13. The pH value changes depending on acidic amino acid S13
14. The pH value changes depending on acidic amino acid with probe 1 S14
15. Fluorescence spectra of 1–Au⁺ with amino acids (GSH, Asp, Glu) at pH 7.0 S15
16. Fluorescence spectra of 1 in the absence and presence of Au⁺ with acidic amino acids S16
17. Color changes of 1–Au⁺ in the presence of different amino acids S17
18. ¹H NMR spectra of 1, 1–Au⁺ and 1–Au⁺ + Cys in CD₃OD:D₂O at 25 °C S18
19. ¹H NMR and ¹³C NMR spectra of 1 S19
20. IR spectra of 1 S20
1. Reagents and general methods

General synthetic materials and methods: Silica gel 60 (230-400 mesh, Merck) was used for column chromatography. Analytical thin layer chromatography was performed using Merck 60 F254 silica gel (precoated sheets, 0.25 mm thick). All reagents and solvents for reactions were used as received with the following exceptions. Tetrahydrofuran (THF) was distilled from sodium (Na) and benzophenone. Ethyl acetate (EtOAc) and hexanes were distilled. All other chemicals used were purchased from Sigma-Aldrich and were used as received.

Spectroscopic materials and methods: Nuclear magnetic resonance (NMR) spectra were recorded in CDCl3 unless otherwise stated, with tetramethylsilane (TMS) as internal reference at ambient temperature, mainly on a Bruker Avance II-400 Fourier Transform Spectrometer operating at 400 MHz for 1H and at 100.6 MHz for 13C. J values were given in Hz. Mass spectra were recorded on a ZQ-4000 LC-MS and QUATTRO LC Triple Quadrupole Tandem mass spectrometer for both low resolution and high resolution mass spectra. Melting points were measured on a Z289078 (Sigma-Aldrich) microscope and were uncorrected. Infrared absorption spectra were recorded as a solution in CHCl3 on a Avatar 360 FT-IR spectrophotometer. Fluorescence emission spectra were obtained using a Hitachi F-4500 spectrofluorimeter linked to a Pentium PC running SpectraCalc software package. The slit width was 5.0 nm for both excitation and emission. The photon multiplier voltage was 400 V. Samples were contained in 10.0 nm path length quartz cuvettes (3.5 mL volume). Upon excitation at 500 nm, the emission spectra were integrated over the range 510-650 nm. The stock solution of 0.001 M (1) was prepared by dissolving 1 in MeOH and without light irradiation. The work solutions of 1×10^{-5} M (1) was obtained by diluting the MeOH stock solution with H2O. Stock solutions of 0.01 M amino acids were prepared by dissolving the appropriate amount of each compound in distilled water. Working solutions were prepared by successive diluting the stock solutions with distilled water. All measurements were conducted at least in triplicate and room temperature (25 °C).

2. Synthesis of 1 from rhodamine hydroxamic acid (2)
The rhodamine-hydroxamic acid was prepared according to the known procedure.1 To a solution of rhodamine-hydroxamic acid (42 mg, 0.098 mmol) in THF (3.0 mL) was added dropwise into a suspension of sodium hydride (4 mg, 0.167 mmol) in an equal amount of THF (1.0 mL) at 0 °C. After stirring for 30 min at 0 °C, a solution of Hoffer’s chlorosugar2 (50 mg, 0.128 mmol) in an equal amount of THF (1.0 mL) was added dropwise. The solution was allowed to warm to room temperature and stirring for 2 h. The reaction was quenched with water (10 mL) and the reaction mixture was extracted with ethyl acetate (3 × 10 mL), and the collected organic layers were dried over anhydrous MgSO$_4$. The mixture was concentrated under vacuum and the crude product was purified by column chromatography (hexanes/EtOAc = 2:1 to 1:1) to give 73 mg (0.093 mmol, 95\%) of sugar-protection compound. The isolation compound (50 mg, 0.064 mmol) was dissolved in MeOH (3.0 mL), and then 25 wt\% of NaOMe (0.2 mL) was added into the flask via syringe under an atmosphere of nitrogen gas. The reaction mixture was stirred at room temperature for 1 h. The solvent was evaporated under reduced pressure. The crude products were purified by silica gel chromatography (EtOAc/hexanes = 3:1 to 3:1 + MeOH 10\%) to give 34 mg (0.062 mmol, 97\%) of compound \textbf{1} as a white solid.

\textbf{Compound 1}: R_f = 0.2 (hexanes/EtOAc/MeOH = 2:1:0.2); mp 228-230°C; 1H NMR (400 MHz, CDCl$_3$) δ = 7.94–7.92 (m, 1H), 7.53–7.50 (m, 2H), 7.08–7.0 (m, 1H), 6.52 (s, 1H), 6.36 (d, J = 5.2 Hz, 2H), 6.07 (s, 1H), 5.76 (dd, J = 4.4, 9.6 Hz, 1H), 4.75 (d, J = 4.8 Hz, 1H), 4.57 (s, 1H), 3.92 (s, 1H), 3.85–3.84 (m, 1H), 3.60-3.56 (m, 3H), 3.24-3.18 (m, 4H), 2.15-2.09 (m, 2H), 1.95 (s, 3H), 1.88 (s, 3H), 1.36-1.30 (m, 6H); 13C NMR (100.6 MHz, CDCl$_3$) δ = 166.1, 152.5, 149.9, 148.0, 147.6, 133.5, 129.1, 129.0, 128.7, 128.0, 124.0, 123.5, 118.3, 118.0, 108.6, 105.6, 105.5, 96.7, 89.1, 69.9, 66.7, 61.2, 40.3, 38.5, 17.0, 14.8; IR (film, cm$^{-1}$) 3385, 2971, 2932, 2863, 1670, 1636, 1621, 1518, 1463, 1449, 1422, 1348, 1271, 1202, 1160, 1095, 1014, 849, 752; HRMS (FAB) m/z calcd. for C$_{31}$H$_{36}$N$_3$O$_6$ [(M + H)$^+$] 546.2604; found 546.2604.

3. Reference

4. Fluorescence intensity changes of 1 with metal ions

5. UV-vis absorption changes of 1–Au⁺ with Cys

UV-vis absorption is changes of 1–Au⁺ upon addition of Cys in H₂O (MeOH 1%) at 25 °C. The arrows indicate the signal changes as increasing in the concentration of Cys (0, 2, 4, 6, 8 and 10 equiv), respectively. [1] = 1.0 × 10⁻⁵ M, [Au⁺] = 1 equiv. Each spectrum is acquired after 1 min of each Cys addition.
6. Fluorescence titration of 1–Au\(^+\) with Hcy

Fluorescence spectra (\(\lambda_{\text{ex}} = 500\) nm) of 1–Au\(^+\) in H\(_2\)O (MeOH 1%) in the presence of Hcy at 25 °C. The arrows indicate the signal changes as increasing in the additions of Hcy (0, 2, 5, 7, 10, 12, 15, 20, 23, and 26 equiv), respectively. [I] = 1.0 \(\times\) 10\(^{-5}\) M, [Au\(^+\)] = 1 equiv. Each spectrum is acquired after 2 min of each Hcy addition.
7. Effects of metal ions with Cys

Effects of metal ions on the fluorescence intensity (λ_{ex} = 500 nm, λ_{em} = 560 nm) changes of probe 1 in H₂O (MeOH 1%) at 25°C. [1-other metal ions such as 1. Fe³⁺ + Cys; 2. Fe²⁺ + Cys; 3. Hg²⁺ + Cys; 4. Zn²⁺ + Cys; 5. Au⁺ + Cys; 6. Pb²⁺ + Cys; 7. Ca²⁺ + Cys; 8. Co²⁺ + Cys; 9. Mn²⁺ + Cys; 10. Mg²⁺ + Cys; 11. Cu²⁺ + Cys; 12. Cd²⁺ + Cys; 13. Al³⁺ + Cys; 14. Cr³⁺ + Cys; 15. Ag⁺ + Cys; 16. Na⁺ + Cys; 17. Li⁺ + Cys; 18. Ni²⁺ + Cys]; [1] = 1.0 × 10⁻⁵ M; [metal ions] = 1 equiv; [Cys] = 20 equiv, respectively.
8. Effects of 1–Au$^{3+}$ ions with Cys

Effects of metal ions on the fluorescence intensity ($\lambda_{ex} = 500$ nm) changes of probe 1 in H$_2$O (MeOH 1%) at 25 $^\circ$C. The fluorescence is weak enhancement as increasing in the additions of Cys (0, 1, 5, 10, 15 and 20 equiv), respectively. [1] = 1.0 \times 10$^{-5}$ M, [Au$^{3+}$] = 1 equiv. Each spectrum is acquired after 2 min of each Cys addition.
9. Effects of 1–Au\(^+\) with amino acids

Effects of amino acids on the fluorescence intensity (\(\lambda_{\text{ex}} = 500\) nm, \(\lambda_{\text{em}} = 560\) nm) changes of probe 1 in H\(_2\)O (MeOH 1%) at 25 °C. [1] = 1.0 \times 10^{-5}\) M; [Au\(^+\)] = 1 equiv; [amino acid] = 20 equiv, respectively; 1. 1 + Au\(^+\); 2. 1 + Au\(^+\) + Cys; 3. 1 + Au\(^+\) + Hcy; 4. 1 + Au\(^+\) + Ala; 5. 1 + Au\(^+\) + Val; 6. 1 + Au\(^+\) + Leu; 7. 1 + Au\(^+\) + Iso; 8. 1 + Au\(^+\) + Pro; 9. 1 + Au\(^+\) + Met; 10. 1 + Au\(^+\) + Thr; 11. 1 + Au\(^+\) + Try; 12. 1 + Au\(^+\) + Gly; 13. 1 + Au\(^+\) + Ser; 14. 1 + Au\(^+\) + Asp; 15. 1 + Au\(^+\) + Phe; 16. 1 + Au\(^+\) + Glu; 17. 1 + Au\(^+\) + Tyr; 18. 1 + Au\(^+\) + Lys; 19. 1 + Au\(^+\) + His; 20. 1 + Au\(^+\) + Arg.

Job’s plot according to the method of continuous variations, indicating the 1:1 binding stoichiometry of 1–Au\(^+\)/Cys.
10. Fluorescence spectra of 1–Au⁺ with propanethiol and thioglycolic acid

Fluorescence response ($\lambda_{ex} = 500$ nm) of 1-Au⁺ upon addition of propanethiol and thioglycolic acid in H₂O (MeOH 1%) at 25 °C. $[1] = 1.0 \times 10^{-5}$ M; [Au⁺] = 1 equiv; [Propanethiol] = 3 equiv and 15 equiv; [Thioglycolic acid] = 15 equiv.
11. Fluorescence spectra of 1 with amino acids (Asp, Glu, GSH)

Fluorescence response ($\lambda_{ex} = 500$ nm, $\lambda_{em} = 560$ nm) of 1 (1.0×10^{-5} M) upon addition of Asp, Glu and GSH in H$_2$O (MeOH 1%) at 25°C.
12. Fluorescence spectra of 1–amino acids with NaHCO₃
Fluorescence response ($\lambda_{ex} = 500$ nm) of 1 with Asp, Glu and GSH upon additions of NaHCO₃ (1, 2, 3, 4, and 5 equiv) in H₂O (MeOH 1%) at 25 °C. [1] = 1.0×10^{-5} M; a) Asp 10 equiv; b) Glu 10 equiv; c) GSH 10 equiv.
13. The pH value changes depending on acidic amino acid

Figure shows the pH value changes depending on Cys, GSH, Asp and Glu (1, 5, 10, 15, 20, 25; respectively) with Au\(^+\) (1 equiv) in H\(_2\)O (MeOH 1\%) at 25 °C.
14. The pH value changes depending on acidic amino acid with probe 1

Figure shows the pH value changes depending on Cys, GSH, Asp and Glu (1, 5, 10, 15, 20, 25; respectively) with $\text{I}^{-1}\text{Au}^{+}$ (1 equiv) in H$_2$O (MeOH 1%) at 25 $^\circ$C.
15. Fluorescence spectra of 1–Au\(^+\) with amino acids (GSH, Asp, Glu) at pH 7.0

Fluorescence response ($\lambda_{ex} = 500$ nm) of 1 (10 μM) with Au\(^+\) (1 equiv) upon addition of GSH (a), Asp (b) and Glu (c) (0, 1, 5, 10, 15, 20, 25 equiv) in PBS-buffer (pH 7.0, MeOH 1%) at 25 °C, respectively.

![Fluorescence spectra](image-url)
16. Fluorescence spectra of 1 in the absence and presence of Au$^+$ with acidic amino acids

Fluorescence response ($\lambda_{ex} = 500$ nm, $\lambda_{em} = 560$ nm) of 1 (10 μM) with Au$^+$ (1 equiv) upon addition of Asp (20 equiv) Glu (20 equiv) and GSH (20 equiv) in H$_2$O (MeOH 1%) at 25 $^\circ$C, respectively.
17. Color changes of $\text{1}–\text{Au}^+$ in the presence of different amino acids

Color change of the $\text{H}_2\text{O (MeOH 1%)}$ solution of $\text{1}–\text{Au}^+$ in the presence of different amino acids; 1. $\text{1}–\text{Au}^+$; 2. $\text{1}–\text{Au}^+ + \text{His}$; 3. $\text{1}–\text{Au}^+ + \text{Gly}$; 4. $\text{1}–\text{Au}^+ + \text{Cys}$; 5. $\text{1}–\text{Au}^+ + \text{Leu}$; 6. $\text{1}–\text{Au}^+ + \text{Ser}$; 7. $\text{1}–\text{Au}^+ + \text{Asn}$; 8. $\text{1}–\text{Au}^+ + \text{Hcy}$; 9. $\text{1}–\text{Au}^+ + \text{Ala}$; 10. $\text{1}–\text{Au}^+ + \text{Val}$; 11. $\text{1}–\text{Au}^+ + \text{Arg}$; 12. $\text{1}–\text{Au}^+ + \text{Iso}$; 13. $\text{1}–\text{Au}^+ + \text{Pro}$; 14. $\text{1}–\text{Au}^+ + \text{Met}$; 15. $\text{1}–\text{Au}^+ + \text{Tyr}$; 16. $\text{1}–\text{Au}^+ + \text{Thr}$; 17. $\text{1}–\text{Au}^+ + \text{Gln}$; 18. $\text{1}–\text{Au}^+ + \text{Phe}$; 19. $\text{1}–\text{Au}^+ + \text{Tyr}$; 20. $\text{1}–\text{Au}^+ + \text{Lys}$.

$[\text{1}] = 2.0 \times 10^{-5} \text{ M, [Au}^+\text{]} = 1 \text{ equiv, [amino acid]} = 10 \text{ equiv.}$

Color Changes

![Image of color changes with different amino acids]
18. 1H NMR spectra of 1, 1–Au$^+$ and 1–Au$^+$ + Cys in CD$_3$OD:D$_2$O at 25 °C

1H NMR spectra (400 MHz) were performed with a CD$_3$OD:D$_2$O (2:1 v/v) solution of 1 (0.0046 M) and a CD$_3$OD:D$_2$O (2:1 v/v) solution of AuCl (0.046 M) and Cys (0.46 M). The AuCl solution was introduced in portions (60 μL corresponds to 1.5 equiv) and, after addition of Cys (40 μL corresponds to 10 equiv) the solution was maintained for 5 min at 25 °C.
19. 1H NMR and 13C NMR spectra of 1
20. IR spectra of 1