Enantioselectivity in the Catalytic Hydroesterification of Acenaphthylene. Direct Evidence of the Racemization of Pd^{II}-alkyl species by a Degenerate Substitution Equilibrium with Pd⁰L_n species.

Jordi Gironès, Josep Duran, Alfonso Polo, and Julio Real

General Considerations.

PdCl₂, Pd(OAc)₂, PPh₃, P(p-MeC₆H₄)₃, P(p-FC₆H₄)₃, rac-BINAP, (R)-(+)-BINAP, (S)-(-)-BINAP, dppf, MeOH, MeOH-d₁, Eu(hfc)₃, *p*-toluenesulfonic acid, HCl (2.0 M in diethyl ether) and CO 4.7 were commercially obtained and used without further purification. Reaction solvents were dried by standard methods and, distilled and deoxygenated before use. Complex [PdCl₂(PhCN)₂] were prepared by established procedures.¹ Commercial technical acenaphthylene is of variable quality, containing acenaphthene (15-30%) and some tars. This acenaphthylene was recrystallized in hexane before use. Typically, the recristallized material has an acenaphthylene content between 88 and 92%, the rest being acenaphthene and uncharacterized materials (2% by GC). NMR spectra were recorded on a Bruker AX-400 or Bruker DPX-200 and reported in the δ scale. ¹H is referenced to tetramethylsilane as internal reference, and the resonance of some added $CDCl_3$ was used to reference the ²H spectra. Gas chromatography analyses were performed on a Thermo Quest Trace GC 2000 in a J&W Scientific DB-5 capillary column (30 m x 0,25 mm diameter), incorporating MS detector. Optical rotation of enantiomeric enriched samples of ester 2 in CH₂Cl₂ solution were measured on a Krüss P3002 electronic polarimeter equipped with a sodium bulb light (589 nm). Flash chromatography was performed on silica gel 60 A CC. Solvents for chromatography were distilled at atmospheric pressure prior to use.

[1] H. M. Colquoum, J. Holton, D. J. Thompson, M. V. Twigg, *New Pathways for Organic Shynthesis*, Plenium Press, New York, **1995**, pp 382-383.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2003

Figure 1. MS of acenaphthene-1-carboxylic acid methyl ester $2\text{-}d_0$ obtained by hydroesterification.

Figure 2. MS of acenaphthene-1-carboxylic acid methyl ester (mainly $2-d_1$) obtained by deuterioesterification using [PdCl₂(PhCN)₂] as catalyst precursor.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2003

Figure 3. MS of acenaphthene-1-carboxylic acid methyl ester (polydeuterated 2) obtained by deuterioesterification using Pd(OAc)₂ as catalyst precursor.

Figure 4. ¹H NMR of acenaphthene-1-carboxylic acid methyl ester 2. (a) racemic ester 2. (b) racemic ester 2 with addition of $[Eu(hfc)_3]$. (c) enantiomeric enriched ester 2, with addition of $[Eu(hfc)_3]$, obtained using Pd(OAc)₂ and (*S*)-(-)-BINAP. (d) enantiomeric enriched ester 2, with addition of $[Eu(hfc)_3]$, obtained using Pd(OAc)₂ and (*R*)-(+)-BINAP.

Supplementary Material (ESI) for Chemical Communications This journal is $\mbox{$\mathbb{C}$}$ The Royal Society of Chemistry 2003

Figure 5. IR spectra of the freshly hydroesterification mixtures using $Pd(OAc)_2$ and $[PdCl_2(PhCN)_2]$ as catalyst precursors.