Electronic Supplementary Information (ESI)

Unprecedented twofold intramolecular hydroamination in diam(m)ine-
dicarboxylatodichloridoplatinum(IV) complexes – ethane-1,2-diamine

versus ammine ligands

Michael R. Reithofer, Markus Galanski,* Vladimir B. Arion, and Bernhard K. Keppler*

University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, A-1090
Vienna, Austria.

Fax: +43 1 4277 52680; Tel: +43 1 4277 52600
E-mail: markus.galansi@univie.ac.at (M. G.), bernhard.keppler@univie.ac.at (B.K.K.).
EXPERIMENTAL

All reagents and solvents were obtained from commercial suppliers, and were used as received. For column chromatography, silica gel 60 (Fluka) was used. The starting compounds (OC-6-33)-dichlorido(ethane-1,2-diamine)dihydroxoplatinum(IV) 1 and (OC-6-33)-diamminedichloridodihydroxoplatinum(IV) 2 were synthesized according to standard literature procedures.[1,2] 1H, 13C, 15N, 195Pt and two-dimensional TOCSY, HMQC, HSQC, and HMBC NMR spectra were recorded with a Bruker Avance DPX 400 or a Bruker Avance III 500 MHz NMR spectrometer, using the solvent residual peak for 1H and 13C as internal standard. 15N chemical shifts were referenced relative to external NH\textsubscript{4}Cl, whereas 195Pt chemical shifts were referenced relative to external K\textsubscript{2}[PtCl\textsubscript{4}]. Half height line widths of 195Pt resonances are given in parentheses. All infrared spectra were obtained from a KBr matrix (4000-400 cm-1) using a Bruker Vertex 70 FTIR spectrometer. Electrospray ionization mass spectrometry was carried out with a Bruker Esquire 3000 instrument using MeOH as solvent. Elemental analyses were performed using a Perkin-Elmer 2400 CHN-Elemental Analyser by the microlaboratory of the Institute of Physical Chemistry, University of Vienna. The elemental analyses of the 15N labeled complexes 4 and 6 did not consider the high isotopic purity of the nitrogen. Therefore both, the corrected as well as the measured values are given.

\textit{(OC-6-33)-Bis(2Z-3-carboxyacrylato)dichlorido(ethane-1,2-diamine)platinum(IV)} (3):

Maleic anhydride (167.5 mg, 1.708 mmol) was added to a suspension of enPtCl\textsubscript{2}(OH)\textsubscript{2} (150 mg, 0.417 mmol) in DMF (4 mL) and the reaction mixture was stirred at 70 °C for 3 h. During this time the solid material dissolved to form a brown solution. DMF was then removed under reduced pressure. The residue was dissolved in acetone and filtered to give a clear, light brown solution. This solution was concentrated under reduced pressure, and
subsequent addition of diethyl ether led to precipitation of a brown solid. The product was dried in vacuo. Yield: 120 mg (52%). C\textsubscript{10}H\textsubscript{14}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{8}Pt (556.21): calcd. C 21.59, H 2.54, N 5.04; found C 21.32, H 2.65, N 5.19. ESI-MS: m/z 578.9 [M+Na+], 594.9 [M+K+], 555.0 [M−H−]. \(\nu_{\text{max}}\) (KBr)/cm\(^{-1}\) 3548 (\(\nu_{\text{COO-H}}\)), 3200 m, 1698 s, 1657 s, 1623 s, 1542 m, 1381 m, 1050 s, 828 m, 577 m. \(\delta\)H (400.13 MHz, \textit{d}\textsubscript{7}-DMF) 13.49 (bs, 2 H, COO\textit{H}), 8.69 (s, \(J_{\text{H,Pt}} = 52.4\) Hz, 4 H, NH\textsubscript{2}), 6.96 (d, \(J_{\text{H,H}} = 11.9\) Hz, 2 H, 2−H/3−H), 6.24 (d, \(J_{\text{H,H}} = 11.9\) Hz, 2 H, 2−H/3−H), 3.38 (bs, 4 H, 5−H).

\(\delta\)C (100.62 MHz, \textit{d}\textsubscript{7}-DMF) 173.0, 165.1 (C−1/C−4), 123.3, 133.3 (C−2/C−3), 47.5 (C−5). \(\delta\)N (40.55 MHz, \textit{d}\textsubscript{7}-DMF) −2.8. \(\delta\)Pt (86.11 MHz, \textit{d}\textsubscript{7}-DMF) 2610 (430 Hz).

\((\text{OC}-6-33)-\text{Diamminebis}(2Z-3\text{-carboxyacrylato})\text{dichloridoplatinum(IV)}\) (4): The synthesis was carried out as described for 3, but the reaction time was only 1 h. Yield: 97.2 mg (62 %). C\textsubscript{8}H\textsubscript{12}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{8}Pt·0.5DMF (568.71): calcd. C 20.06, H 2.74, N 6.51; found (without consideration of \(15N\) labeling) C 20.34, H 2.54, N 5.91; found (calcd. with consideration of \(15N\) labeling) C 20.27, H 2.53, N 6.25. ESI-MS: m/z 530.4 [M−H−]. \(\nu_{\text{max}}\) (KBr)/cm\(^{-1}\) 3277 (\(\nu_{\text{N-H}}\)), 3130 m, 1692 m, 1620 m, 1576 s, 1525 m, 1485 m, 1301 s, 862 s. \(\delta\)H (400.13 MHz, \(d\)\textsubscript{7}-DMF) 13.74 (bs, 2 H, OH), 6.92 (d, \(J_{\text{H,N}} = 75.4\) Hz, \(J_{\text{H,Pt}} = 51.9\) Hz, 6 H, NH\textsubscript{3}), 6.69 (d, \(J_{\text{H,H}} = 11.9\) Hz, 2 H, 2−H/3−H), 6.27 (d, \(J_{\text{H,H}} = 11.9\) Hz, 2 H, 3−H). \(\delta\)C (100.62 MHz, \(d\)\textsubscript{7}-DMF) 172.2 (\(J_{\text{C,Pt}} = 26.1\) Hz, C−1), 165.3 (C−4), 131.8 (\(J_{\text{C,Pt}} = 41.5\) Hz, C−2), 125.5 (C−3). \(\delta\)N (50.68 MHz, \(d\)\textsubscript{7}-DMF) −41.0 (q, \(J_{\text{N,H}} = 76.3\) Hz, \(J_{\text{N,Pt}} = 251\) Hz). \(\delta\)Pt (107.51 MHz, \(d\)\textsubscript{7}-DMF) 2777 (t, \(J_{\text{P,PL}} = 252\) Hz).
1,1’-Carbonyldiimidazole (CDI; 132.7 mg, 0.818 mmol) in DMF (8 mL) was added to a solution of 3 (222 mg, 0.399 mmol) in DMF (4 mL) and the mixture was heated to 60 °C. After 10 min stirring, the solution was cooled down to room temperature and CO$_2$ was removed by flushing with argon. Propylamine (64.5 µL, 0.818 mmol) in DMF (12 mL) was added to the solution and stirred for 24 h at room temperature. DMF was then removed under reduced pressure to form a brown oil. The crude product was purified by column chromatography (EtOAc/MeOH, 6:1) to yield a pale-yellow solid. Yield: 42 mg (16%).

ν$_{\text{max}}$(KBr)/cm$^{-1}$: 3278 (νN-H), 3018 w, 2937 w, 2876 w, 1678, 1647 (νas C=O), 1561 m, 1299 m, 667 w.

δ1H (400.13 MHz, d$_7$-DMF) 10.05 (m, $J_{\text{H,Pt}} = 44.5$ Hz, 2 H, C−8−NH), 8.22 (m, 2 H, C−4−NH), 4.75 (dd, $J_{\text{H,H}} = 10.8$ Hz, $J_{\text{H,Pt}} = 36$ Hz, 2 H, 2−H), 4.04 (dd, $J_{\text{H,H}} = 9.6$ Hz, $J_{\text{H,Pt}} = 37.4$ Hz, 2 H, 8−H), 3.51 (m, 2 H, 3−H), 3.40 (m, 2 H, 8−H), 3.32 (m, 4 H, 5−H), 3.04 (m, 2 H, 3−H), 1.67 (m, 4 H, 6−H), 1.06 (t, $J_{\text{H,H}} = 7.4$ Hz, 6 H, 7−H). δ13C (100.62 MHz, d$_7$-DMF) 182.4 (C−1), 167.2 (C−4), 62.4 (C−2), 56.6 (C−8), 39.6 (C−5), 38.0 (C−3), 21.0 (C−6), 9.5 (C−7). δ15N (40.55 MHz, d$_7$-DMF) 94.8 (C−4−NH), 21.0 (C−8−NH). δ$^\text{Pt}$ (86.11 MHz, d$_7$-DMF) 2224 (332 Hz).

The synthesis was carried out as described for 5. The crude product was first purified by column chromatography (EtOAc/MeOH, 6:1); afterwards, the pure product was obtained via vapor diffusion of diethyl ether into a solution of 6 in acetone. Yield: 15.3 mg (7 %). C$_{14}$H$_{26}^{15}$N$_2$N$_2$O$_6$Pt (614.35): calcd. C 27.37, H 4.27, N 9.44; found
(without consideration of 15N labeling) C 27.58, H 4.30, N 8.95; found (calcd. with consideration of 15N labeling) C 27.49, H 4.29, N 9.27. ESI-MS: m/z 637.3 [M+Na$^+$]$^+$, 613.2 [M–H$^-$]. v_{max}(KBr)/cm$^{-1}$ 3344 m, 3272 w, 3046 m, 2970 w, 2880 w, 1696, 1638 (ν_{as} C=O), 1571 m, 1225 m, 870 w. δ_H(500.32 MHz, d_7-DMF) 9.87 (dt, $J_{HH} = 8.6$ Hz, $J_{HN} = 77.9$ Hz, $J_{HPt} = 55.9$ Hz, 1 H, C–2–NH), 8.64 (t, $J_{HH} = 5.5$ Hz, 2 H, C–4–NH), 6.77 (d, $J_{HN} = 74.3$ Hz, $J_{HPt} = 49.5$ Hz, 3 H, NH$_3$), 4.90 (m, 2 H, 2–H), 3.33 (m, 2 H, 3–H), 3.27 (m, 4 H, 5–H), 3.25 (m, 2 H, 3–H), 1.63 (m, 4 H, 6–H), 1.03 (t, $J_{HH} = 7.4$ Hz, 6 H, 7–H). δ_C(125.81 MHz, d_7-DMF) 179.9 (d, $J_{CN} = 1.8$ Hz, 1–C), 169.4 (4–C), 63.1 (d, $J_{CN} = 4.0$ Hz, 2–C), 39.5 (5–C), 35.5 (3–C), 21.0 (6–C), 9.6 (7–C). δ_N(50.68 MHz, d_7-DMF) 0.3 (d, $J_{NH} = 78.1$ Hz, $J_{NPt} = 215$ Hz, 1 N, C–2–NH), -31.3 (q, $J_{NH} = 74.4$ Hz, $J_{NPt} = 277$ Hz, 1 N, NH$_3$). δ_Pt(107.55 MHz, d_7-DMF) 2302 (dd, $J_{Pt,N} = 274$ Hz, $J_{P,N} = 218$ Hz)
Selected NMR spectra of complex 5

Figure S1. 1H–1H TOCSY NMR spectrum of complex 5.

Figure S2. 1H–13C HMQC NMR spectrum of complex 5.
Figure S3. \(^1\text{H}-^{13}\text{C}\) HMBC NMR spectrum of complex 5.

Figure S4. \(^1\text{H}-^{15}\text{N}\) HMQC NMR spectrum of complex 5.
Figure S5. 195Pt NMR spectrum of complex 5.

Selected NMR spectra of complex 6

Figure S6. 1H–1H COSY NMR spectrum of complex 6.
Figure S7. 1H–1H TOCSY NMR spectrum of complex 6.

Figure S8. 1H–13C HSQC NMR spectrum of complex 6.
Figure S9. 1H–13C HMBC NMR spectrum of complex 6.

Figure S10. 195Pt{1H} NMR spectrum of complex 6.

References