One-Pot Synthesis of Reverse Type-I In$_2$O$_3$@In$_2$S$_3$ Core-shell Nanoparticles

Zhaoyong Sun,a Amar Kumbhar,b Kai Sun,c Qingsheng Liud and Jiye Fang*ae

aDepartment of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
bElectron Microscope Facility, Clemson University, Anderson, SC 29625, USA
cElectron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
dDepartment of Chemistry, Texas A&M University, TX 77842, USA
aeMultidisciplinary Program in Materials Science & Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA

Figure S1a. TEM image of In$_2$O$_3$ core nanocrystals.
Figure S1b. TEM image of In$_2$O$_3$@In$_2$S$_3$ core-shell nanoparticles.
Figure S1c. High-resolution TEM image of In$_2$O$_3$-In$_2$S$_3$ nanoparticles.
Figure S2. Photoluminescence spectra recorded with various reaction conditions, showing that the reduction step is more important than the sulfidization step for the formation of In$_2$S$_3$ shell.