One-Pot Synthesis of Reverse Type-I In₂O₃@In₂S₃ Core-shell Nanoparticles

Zhaoyong Sun,^a Amar Kumbhar,^b Kai Sun,^c Qingsheng Liu^d and Jiye Fang*^{ae}

^aDepartment of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA ^bElectron Microscope Facility, Clemson University, Anderson, SC 29625, USA

^cElectron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, MI 48109, USA ^dDepartment of Chemistry, Texas A&M University, TX 77842, USA

^eMultidisciplinary Program in Materials Science & Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA

Figure S1a. TEM image of In_2O_3 core nanocrystals.

A1-90107 C-S-4.tif A1-90107 C-S-4 Print Mag: 172000x @ 51 mm 11:14 09/16/07

20 nm HV=120kV Direct Mag: 500000x

Figure S1b. TEM image of $In_2O_3@In_2S_3$ core-shell nanoparticles.

Figure S1c. High-resolution TEM image of In_2O_3 - In_2S_3 nanoparticles.

Figure S2. Photoluminescence spectra recorded with various reaction conditions, showing that the reduction step is more important than the sulfidization step for the formation of In_2S_3 shell.