Hexagonal crystalline inclusion complexes of 4-iodophenoxy trimesoate

F. Christopher Pigge,* Venu R. Vangala, Pradeep P. Kapadia, Dale C. Swenson and Nigam P. Rath

Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA. Fax: 319-335-1270; Tel: 319-335-3805.

E-mail: chris-pigge@uiowa.edu.

Supplementary Information (ESI) (6 pages)

Table of contents

(i)	Compound characterization data for 2 .	S2
(ii)	DSC thermogram obtained on non-solvated crystals of 2	S4
grown from CH ₂ Cl ₂ .		
(iii)	DSC/TGA analysis of $2 \cdot 3C_5H_5N$	S5
(iv)	Overlay of simulated and experimental powder X-ray	S7
diffraction patterns for 2 (non-solvated).		

(i) Preparation of benzene-1,3-5-tricarboxylic acid tris(4-iodophenyl) ester (2) This compound was prepared using procedures similar to those previously reported.¹ 1,3,5-Benzenetricarbonyl trichloride (2.0 mmol, 0.53 g), Et₃N (10 mmol, 1.4 mL), and DMAP (1.0 mmol, 0.12 g) were combined in dichloromethane (15 mL) and cooled to 10 °C. To this reaction mixture, 4-iodophenol (6.6 mmol, 1.45 g) dissolved in dichloromethane (10 mL) was added dropwise. The reaction was allowed to gradually warm to rt and maintained for 4 h. Water was added to the reaction mixture and the layers were separated. The aqueous phase was extracted with additional CH₂Cl₂ and the combined organic layer was washed with 10% ag. HCl solution, 5% ag. NaOH solution, and brine, followed by drying over anhydrous Na₂SO₄. Filtration and removal of the solvent afforded crude product that was subjected to purification by flash column chromatography (SiO₂, 1:1 hexanes:EtOAc) to afford **2** (1.06 g, 65%) as a colorless solid. ¹H-NMR (300 MHz, CDCl₃) δ 7.05 (d, J = 4.5 Hz, 6H), 7.79 (d, J = 4.5 Hz, 6H), 9.2 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 90.8, 123.9, 131.2, 136.4, 138.9, 150.5, 163.1. IR (neat) v (cm⁻¹) 1744, 1219. Anal. Calcd. for C₂₇H₁₅I₃O₆: C, 39.71; H, 1.84. Found: C, 39.92; H, 1.89.

X-ray quality single crystals of $2 \cdot 3$ CHCl₃, $2 \cdot 3$ C₅H₅N, and $2 \cdot$ non-solvated were obtained by slow evaporation of solutions of **2** in CHCl₃, pyridine, and CH₂Cl₂, respectively. In the case of $2 \cdot 3$ CHCl₃ and $2 \cdot 3$ C₅H₅N continued contact with the mother liquor over a period of several days resulted in disappearance of crystals of the respective inclusion complexes (hexagonal blocks) and the concomitant formation of crystals of **2** ·nonsolvated (colorless needles) as determined by X-ray diffraction analysis of randomly chosen samples. Crystallization yields were not determined. Crystals of $2 \cdot 1.5C_6H_6$ were obtained upon attempted co-crystallization of 2 and trimesic acid trimethyl ester. Thus, 2 (~ 50 mg) was dissolved in 3 mL of benzene containing an equimolar amount of trimesic acid trimethyl ester. Slow evaporation at room temperature initially deposited hexagonal blocks found to be $2 \cdot 1.5C_6H_6$. Over time these crystals were replaced with crystalline needles found to be $2 \cdot non$ -solvated. Instability of the crystalline inclusion complexes precluded PXRD analysis, however DSC/TGA analysis of $2 \cdot 3C_5H_5N$ was performed (as shown below). Thermal and PXRD analyses of $2 \cdot non$ -solvated were also obtained.

References

1. C.-H. Lee and T. Yamamoto, Bull. Chem. Soc. Jpn. 2002, 75, 615.

(ii) Differential Scanning Calorimetry (DSC) of 2 (non-solvated)

DSC was performed using a TA instruments 2920 MDSC V 2.6A DSC standard cell module. The sample was placed in crimped but vented aluminum pan and heated from 20 - 300 °C at a rate of 5 °C min⁻¹ under dry nitrogen. Mp. 226.74 °C.

Figure S1. DSC trace of 2 (non-solvated form) after crystallization from CH₂Cl₂.

(iii) DSC/TGA of 2·3C₅H₅N

A thermogravimetric analyzer (TGA, Model 2950, TA Instruments) and a differential scanning calorimeter (DSC, Model 2010, TA instruments) were connected to a thermal analysis operating system (Thermal Analyst 2000, TA Instruments). Approximately 5-10 mg of the sample in an open aluminum pan was heated in the DSC and TGA from room temperature to 300°C at 5°C/min under nitrogen purge.

Figure S2. DSC trace of $2 \cdot 3C_5H_5N$. Loss of pyridine appears to take place in two stages beginning at ~ 77 °C and 130 °C followed by ample melting at ~ 227 °C.

Figure S3. TGA of $2 \cdot C_5 H_5 N$. Weight loss occurs in two stages corresponding to endothermic transitions in the DSC trace. Total observed weight loss is ~ 26% which compares favorably to the calculated value of 22.5% for loss of all pyridine solvates.

(iv) X-Ray powder diffraction (PXRD)

X-ray powder diffraction data were recorded on a Siemens D5000 diffractometer using Cu K α X-radiation at 50 kV and 30 mA. Diffraction patterns were collected over a range of 5 - 45° 2 θ at a scan rate of 1° 2 θ min⁻¹. The software Powder Cell 2.3 was used for Rietveld refinement (N. Kraus and G. Nolze, *POWDER CELL*, version 2.3; Federal Institute for Materials Research and Testing: Berlin, Germany, 2000).

Figure S4. Comparison of Rietveld simulated (red) and experimental (violet) powder patterns for the non-solvated form of **2**. The simulated pattern was calculated from single crystal X-ray diffraction data obtained on crystals grown from CH_2Cl_2 . Experimental powder pattern was obtained using material purified via flash column chromatography.