Supplementary information

Experimental and related aspects

Synthesis of aminoclay:

The aminoclay was prepared by the method reported in the literature.¹ Typical synthesis involves room temperature drop wise addition of 3-aminopropyltriethoxysilane (1.3 mL, 5.85 mmol) to an ethanolic solution of magnesium chloride (0.84 g, 3.62 mmol) in ethanol (20 g). The white slurry obtained after 5 min was stirred overnight and the precipitate isolated by centrifugation was washed with ethanol (50 mL) and dried at 40 °C.

Synthesis of aminoclay stabilized Cu nanoparticles:

CuSO₄.5H₂O was used as the metal precursor for Cu nanoparticles synthesis. The aminoclay-Cu nanoparticles composite was prepared as follows. The aminoclay was first exfoliated by dispersing 20 mg of clay in 2 mL millipore water by sonication. To this transparent clay suspension, 500 μ L of 10 mM copper sulphate solution was added followed by the drop wise addition of 1 mL of 1 M hydrazine hydrate solution.

Synthesis of Cu chalcogenides from Cu-aminoclay nanoparticles:

(a) Synthesis of Cu₂S nanoparticles:

A known volume of freshly prepared Cu-aminoclay solution was mixed with an equal volume of 10 mM Na₂S solution followed by sonication for 5 minutes. The wine-red color of Cu-aminoclay solution changed in 5 minutes to greenish-brown colour indicative of formation of Cu₂S nanoparticles.

(b) Synthesis of CuSe₂ nanoparticles:

A known volume of freshly prepared Cu-aminoclay solution was mixed with an equal volume of 1 mM NaHSe solution followed by sonication for 5 minutes. The wine-red color of Cu-aminoclay solution changed in 5 minutes to dark orange-red colour due to the formation of CuSe₂ nanoparticles.

Estimation of undissociated hydrazine hydrate present in water and aminoclay:

20 mg of aminoclay was first exfoliated in 3 mL millipore water by sonication. 1mL of 1 M hydrazine hydrate was added to this aminoclay solution. In a separate vial 1mL of 1M hydrazine hydrate was added to 3 mL millipore water for comparison. Both the samples were kept for 8 days exposed to air. For the estimation of residual hydrazine hydrate present in pure water and aminoclay, the following quantitative titration was performed. Equal volumes of 0.05 M K₃Fe (CN) $_6$ solution and 0.05 M KOH solution were mixed in a conical flask and titrated against hydrazine hydrate to give light brown coloured solution as an end point. The reaction is shown below.²

 $4 \text{ K}_3\text{Fe}(\text{CN})_6 + 4 \text{ KOH} + \text{N}_2\text{H}_4 \text{H}_2\text{O} \longrightarrow 4 \text{ K}_4\text{Fe}(\text{CN})_6 + \text{N}_2 + 5 \text{H}_2\text{O}$

Characterization techniques

For TEM analysis, the aqueous clay suspension was first precipitated by the addition of excess ethanol and then redispersed it in ethanol by sonication before drop casting on a carbon-coated copper grid. TEM images were recorded with a JEOL JEM 3010 instrument (Japan) operated at an accelerating voltage of 300 kV. UV-Vis absorption spectroscopic measurements were performed with Perkin-Elmer instruments Lambda 900 UV/Vis/NIR spectrometer. For XRD analysis, the Cu-aminoclay solution prepared was precipitated by the addition of excess ethanol which further on drying yields Cu powder.

Fig. S1. UV-Vis spectra of Cu-aminoclay solution aged at different time intervals.

Fig. S2. TEM images of (a) freshly prepared Cu-aminoclay solution, (b) corresponding electron diffraction pattern, (c) Cu-aminoclay solution aged for 14 days, (d) corresponding electron diffraction pattern.

Supplementary Material (ESI) for Chemical Communications

Fig. S3 (a).TEM image of Cu powder (obtained by precipitating freshly prepared Cuaminoclay solution) kept in air for two months.

Fig. S3 (b).Wide angle XRD pattern of Cu-aminoclay composite kept in air for two months. Low-angle reflection with d_{001} spacing of 1.7 nm corresponding to the bilayer arrangement of propylamino groups of aminoclay. The in-plane reflections with $d_{020 \ 110} = 0.42$ nm, $d_{130 \ 200} = 0.26$ nm and $d_{060} = 0.156$ nm are associated with clay.³

Fig.S4. UV-Vis spectrum of Cu chalcogenides in aminoclay solution kept for 3 days (a) Cu_2S -aminoclay solution, (b) $CuSe_2$ -aminoclay solution (both the cases copper plasmon band is seen).

Reduction of p-nitro phenol:

The light yellow colour of p-nitrophenol changes to yellow-green upon mixing of sodium borohydride solution. The intensity which was quantitatively monitored using UV-Vis spectrophotometer with a time gap of 20 seconds in a scanning range of 200-700 nm at room temperature of 25 0 C with scan speed of 250 nm per minute.

The reduction of p-nitrophenol was monitored using UV-Vis absorption spectroscopy. 1 mL of 15mM NaBH₄ (aqueous solution) was mixed with 1.7 mL of 0.2 mM 4-nitrophenol (aqueous solution) in a quartz cell. The light yellow colour of p-nitrophenol changes to yellow-green upon mixing of sodium borohydride solution. The reduction of p-nitrophenol to p-aminophenol was very slow in presence of NaBH₄ alone (without the aid of Cu nanoparticles). Aqueous p-nitro phenol shows a peak centred around 317 nm, which on addition of NaBH₄ red-shifted to 401nm. In the absence of copper nanoparticles this peak remains unaltered. Addition of 100 µL of Cu-aminoclay solution to the above mixture gradually decolourises the solution due to the formation of p-aminophenol (S-5(a)). The decrease in intensity of the peak at 401 nm was monitored for the reduction of p-nitro phenol (or the increase in intensity of the peak at 300 nm corresponding to p-aminophenol) using UV-Vis absorption spectroscopy. The rate constant was calculated by measuring the absorbance (at 401 nm) at regular intervals of every 20 sec. The rate constant derived by plotting $\ln(A_{max})$ vs. time was around $2*10^{-3}$ sec⁻¹ which follows first order kinetics. (S-5(b)). This value is comparable to other nanoparticle catalysts used for the reduction of pnitrophenol in the presence of NaBH₄.⁴

Fig. S5. (a) UV/Vis absorption spectra for the reduction of 0.2 mM p-nitrophenol by 15 mM NaBH₄ in the presence of Cu-aminoclay solution ; (b) Plot of $\ln(A)$ vs time for the reduction of p-nitrophenol.

References

- (1) A. J. Patil, E. Muthusamy and S. Mann, Angew. Chem. Int. Ed., 2004, 43, 4928.
- (2) P. J. Durrant and B. Durrant, *Introduction to Advanced Inorganic Chemistry.*, 1962, 703-704.
- (3) S. L. Burkett, A. Press and S. Mann, Chem. Mater., 1997, 9, 1071.
- (4) N. Pradhan, A. Pal and T. Pal, *Langmuir.*, 2001, 17, 1800; S. Kundu, S. Lau and H. Liang, *J. Phys. Chem. C.*, 2009, 113, 5150; J. Liu, G. Qin, P. Raveendran and Y. Ikushima, *Chem. Eur. J.*, 2006, 12, 2131.