Supporting Information:

Recognition Study of Substituted Benzoic Acids by 7-Substituted Pterin Receptors in Solution and Solid Phases

Shyamaprosad Goswami*, Anita Hazra, Subrata Jana and Hoong-Kun Fun*

aDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103, West Bengal, India E-mail: spgoswamical@yahoo.com; Fax: +91-3326682916.
bPresently at Department of Chemistry, University of Victoria, Victoria, Canada. cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my Fax: +604 6579150.

Table of Contents:
1. UV-vis titration spectra and Association constant determination curve: ---------S2
2. Fluorescence titration spectra and association constants determination curves:-S5
3. 1H NMR of receptor 1: ---S7
4. 13C NMR spectra of receptor 1:---S8
5. Mass spectra of receptor 1:---S8
6. 1H NMR of receptor 2: ---S9
7. 13C NMR spectra of receptor 2:---S9
8. Mass spectra of receptor 2:---S10
9. 1H NMR of receptor 1 with 3-hydroxybenzoic acid: ----------------------------------S11
1. UV-vis titration spectra and Association constant determination curve:

![UV-vis titration spectra](image)

Figure 1: UV-vis titration spectra of receptor 1 (1.69×10^{-4} mL$^{-1}$) with substituted benzoic acids: (i) benzoic acid; (ii) 2-hydroxybenzoic acid; (iii) 3-hydroxybenzoic acid; (iv) 4-hydroxybenzoic acid; (v) 3-nitrobenzoic acid and (vi) 4-nitrobenzoic acid.
Figure 2: UV-vis titration spectra of receptor 2 (1.12 x 10^{-4} mL^{-1}) with substituted benzoic acids: (i) benzoic acid; (ii) 2-hydroxybenzoic acid; (iii) 3-hydroxybenzoic acid; (iv) 4-hydroxybenzoic acid; (v) 3-nitrobenzoic acid and (vi) 4-nitrobenzoic acid.
Figure 3: Binding constant calculation curve of (i) receptor 1; (ii) receptor 2 with different aromatic acids by UV-vis titration method in acetonitrile.
2. Fluorescence titration spectra and association constants determination curves:

![Fluorescence spectra](image)

Figure 4: Fluorescence titration spectra of receptor 1 \((1.53 \times 10^{-4} \text{ mL}^{-1})\) with aromatic acids: (i) 2-hydroxybenzoic acid and (ii) 4-nitrobenzoic acid in acetonitrile solution.

![Fluorescence spectra](image)

Figure 5: Fluorescence titration spectra of receptor 2 \((1.12 \times 10^{-4} \text{ mL}^{-1})\) with aromatic acids: (i) 2-hydroxybenzoic acid; (ii) 4-nitrobenzoic acid in acetonitrile solvent.
3. 1H NMR (500 MHz) of receptor 1:
4. 13C NMR (125 MHz) of receptor 1:

![NMR Spectrogram](image)

5. Mass spectra of receptor 1:

![Mass Spectrum](image)
6. \(^1\)H NMR (500 MHz) of receptor 2:

![NMR Spectrogram](image)

7. \(^{13}\)C NMR (75 MHz) of receptor 2:

![NMR Spectrogram](image)
8. Mass spectra of receptor 2: 322.0 (M+H)^+
9. 1H NMR (500 MHz) of receptor 1 with 3-hydroxybenzoic acid: