Two Complexes of Copper(II) Salts with 5-Amino-3-(pyrid-2-yl)-1*H*-pyrazole, the Prototype for a New Class of Ditopic Ligand

Christopher M. Pask^a, Kenneth D. Camm^a, Neil J. Bullen^a, Michael J. Carr^a, William Clegg^b, Colin A. Kilner^a and Malcolm A. Halcrow^{a,*}

^aSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds, U.K. LS2 9JT. Email: M.A.Halcrow@leeds.ac.uk ^bSchool of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, U.K. NE1 7RU.

Supplementary Information

Fig. S1 Views of the complex cations in the crystal structures of $[CuBrL_2]Br \cdot CH_3OH$ (1) and $[CuL_2(OH_2)]SO_4 \cdot H_2O \cdot CH_3OH$ (2), emphasising their different molecular structures.

Table S1 Selected bond lengths and angles for $[CuBrL_2]Br \cdot CH_3OH(1)$ and $[CuL_2(OH_2)]SO_4 \cdot H_2O \cdot CH_3OH(2)$.

Table S2 Metric parameters for the hydrogen bond and π - π interactions in [CuBrL₂]Br·CH₃OH (1).

Table S3 Metric parameters for the hydrogen bond and π - π interactions in [CuL₂(OH₂)]SO₄·H₂O·CH₃OH (2).

Table S4 Connections making up the hydrogen-bonded network in [CuBrL₂]Br·CH₃OH (1).

Table S5 Connections making up the hydrogen-bonded network in $[CuL_2(OH_2)]SO_4 H_2O CH_3OH$ (2).

Fig. S2 Two views of the topology of the extended hydrogen-bonded network in [CuBrL₂]Br·CH₃OH (1).

Fig. S3 Two views of the topology of the extended hydrogen-bonded network in $[CuL_2(OH_2)]SO_4 \cdot H_2O \cdot CH_3OH$ (2).

Fig. S4 Diagram showing the relationship between the network topology for $[CuL_2(OH_2)]SO_4 H_2O CH_3OH (2)$ and the boron nitride structure.

Fig. S1 Views of the complex cations in the crystal structures of $[CuBrL_2]Br \cdot CH_3OH$ (1, left) and $[Cu(OH_2)L_2]SO_4 \cdot H_2O \cdot CH_3OH$ (2, right), emphasising their different molecular structures. All C-bound H atoms have been omitted, and displacement ellipsoids are at the 35 % probability level.

<i>T</i> (K)	1 (X = Br)	2 (X = O)
Cu(1)–N(2)	1.996(8)	2.166(4)
Cu(1)–N(9)	2.089(8)	1.942(4)
Cu(1)–N(14)	1.998(8)	2.063(4)
Cu(1)–N(21)	2.035(9)	1.939(4)
Cu(1)–X(26)	2.5140(16)	2.068(3)
N(2)–Cu(1)–N(9)	80.1(3)	78.54(15)
N(2)-Cu(1)-N(14)	172.1(3)	121.22(14)
N(2)-Cu(1)-N(21)	95.0(3)	99.08(15)
N(2)-Cu(1)-X(26)	92.6(2)	100.19(13)
N(9)-Cu(1)-N(14)	95.7(3)	96.30(15)
N(9)-Cu(1)-N(21)	114.6(3)	173.76(16)
N(9)-Cu(1)-X(26)	112.8(2)	94.91(14)
N(14)–Cu(1)–N(21)	80.6(3)	79.94(16)
N(14)-Cu(1)-X(26)	95.2(2)	138.46(14)
N(21)-Cu(1)-X(26)	132.6(2)	91.18(15)

Table S1 Selected bond lengths and angles (Å, °) for [CuBrL₂]Br·CH₃OH (1) and [CuL₂(OH₂)]SO₄·H₂O·CH₃OH (2).

Hydrogen bonds ^a	D–H	HA	DA	D–HA
N(10)–H(10)Br(27)	0.88	2.43	3.263(8)	158.1
N(13)–H(13A)Br(27)	0.88	2.90	3.642(9)	142.5
$N(13)-H(13B)Br(26^{i})$	0.88	2.76	3.491(9)	141.6
N(22)–H(22)O(28)	0.88	1.89	2.708(11)	154.6
N(25)–H(25A)Br(27 ⁱⁱ)	0.88	3.05	3.776(9)	141.5
N(25)–H(25B)Br(26 ⁱⁱⁱ)	0.88	2.76	3.510(9)	143.6
$O(28) - H(28) Br(27^{iv})$	0.84	2.51	3.287(8)	155.2
π - π Interactions ^a	Interplanar distance	Dihedral angle	Centroid offset	
$[N(2)-N(13)]-[N(2^{i})-N(13^{i})]$	3.349(5)	0	2.84	
$[N(14)-N(25)]-[N(14^{iii})-N(25^{iii})]^{b}$	3.59(3)	7.2(2)	2.64	

Table S2 Metric parameters for the hydrogen bond and π - π interactions in [CuBrL₂]Br·CH₃OH (1) (Å, °). Symmetry codes correspond to those in Fig. 1 of the main paper.

^aSymmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, $y+\frac{1}{2}$, $-z+\frac{1}{2}$; (iii) $x+\frac{1}{2}$, y, $-z+\frac{1}{2}$; (iv) $-x+\frac{3}{2}$, $y+\frac{1}{2}$, z. ^bAverage value quoted for distance between atoms in one ring and the plane of the other, because dihedral angle between the interacting ligands $\neq 0$.

Table S3 Metric parameters for the hydrogen bond and π - π interactions in [CuL₂(OH₂)]SO₄·H₂O·CH₃OH (**2**) (Å, °). Symmetry codes correspond to those in Fig. 2 of the main paper.

Hydrogen bonds ^a	D–H	HA	DA	D–H…A
N(10)–H(10)O(30 ⁱ)	0.88	1.95	2.779(5)	155.5
N(13)–H(13A)O(29 ⁱ)	0.88	2.04	2.858(5)	153.6
N(13)–H(13B)O(31 ⁱⁱ)	0.88	2.11	2.950(5)	158.6
N(22)–H(22)O(28)	0.88	2.05	2.841(5)	148.4
N(25)–H(25A)O(31)	0.88	2.44	3.251(6)	153.0
N(25)–H(25B)O(28 ⁱⁱⁱ)	0.88	2.32	3.116(6)	151.2
O(26)–H(26A)O(33)	0.85(3)	1.86(3)	2.707(5)	175(5)
O(26)–H(26B)O(32 ⁱ)	0.85(3)	1.85(3)	2.662(5)	158(5)
O(32)–H(32A)O(30)	0.86(3)	1.93(3)	2.708(5)	151(5)
$O(32)-H(32B)O(31^{iv})$	0.84(3)	1.89(3)	2.735(5)	176(5)
O(33)–H(33)O(29)	0.84	1.92	2.750(5)	169.0
π - π Interaction ^a	Interplanar distance	Dihedral angle	Centroid offset	
$[N(14)-N(25)]-[N(14^{viii})-N(25^{viii})]$	3.348(10)	0	0.98	

^aSymmetry codes: (i) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) -x + 2, -y + 1, -z + 2; (viii) -x + 1, -y + 1, -z + 1.

Table S4 Connections making	up the hydrogen-bonded network in	$[CuBrL_2]Br \cdot CH_3OH(1)$. ^a

	Distance between nodes (Å)	
CuCu pathways [via the coordinated bromine atom Br(26)]		
$N(13)-H(13B)Br(26^{i})/N(13^{i})-H(13B^{i})Br(26)^{b}$	$Cu(1)Cu(1^{i}) = 7.623(3)$	
N(25)–H(25B)Br(26 ⁱⁱⁱ) and N(25 ^{vii})–H(25B ^{vii})Br(26)	$Cu(1)Cu(1^{iii}) = Cu(1)Cu(1^{vii}) = 7.301(2)$	
CuBr pathways [to the non-coordinated bromine atom Br(27)]		
N(10)-H(10)Br(27)/N(13)-H(13A)Br(27)	Cu(1)Br(27) = 5.5751(19)	
N(25)-H(25A)Br(27 ⁱⁱ)	$Cu(1)Br(27^{ii}) = 8.458(2)$	
$N(22)-H(22)O(28)-H(28)Br(27^{iv})$	$Cu(1)Br(27^{iv}) = 5.4041(19)$	
^a Symmetry codes correspond to those in Fig. 1 of the main article: (i) $-x+2$, $-y+1$, $-z+1$; (ii) $-x+2$, $y+\frac{1}{2}$, $-z+\frac{1}{2}$; (iii) $x+\frac{1}{2}$, $y-\frac{1}{2}$, $y-\frac$		

Table S5 Connections making up the hydrogen-bonded network in $[CuL_2(OH_2)]SO_4 H_2O CH_3OH$ (2).^a There are two distinct hydrogen bond pathways linking Cu(1) with S(27) and S(27ⁱ).

	Distance between nodes (Å)
CuSO ₄ pathways	
N(22)-H(22)O(28)/N(25)-H(25A)O(31)/O(26)-H(26A)O(33)-H(33)O(29)	Cu(1)S(27) = 5.2754(14)
N(10)-H(10)O(30 ⁱ)/N(13)-H(13A)O(29 ⁱ)/	$Cu(1)S(27^{i}) = 5.4879(14)$
O(26)–H(26B)O(32 ⁱ)–H(32A ⁱ)O(30 ⁱ)	
N(13)–H(13B)O(31 ⁱⁱ)	$Cu(1)S(27^{ii}) = 8.3332(14)$
N(25)–H(25B)O(28 ⁱⁱⁱ)	$Cu(1)S(27^{iii}) = 8.1360(14)$
$O(26)-H(26B)O(32^{i})-H(32B^{i})O(31^{vii})$	$Cu(1)S(27^{vii}) = 5.9073(14)$
SO ₄ SO ₄ pathway	
O(30)H(32A)-O(32)-H(32B)O(31 ^{iv})/	$S(27)S(27^{iv}) = 6.588(3)$
$O(30^{iv})H(32A^{iv})-O(32^{iv})-H(32B^{iv})O(31)^{b}$	

^aSymmetry codes correspond to those in Fig. 2 of the main article: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 2, -y + 1, -z + 2; (vii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + \frac{3}{2}$. ^bCentrosymmetric pair.

Fig. S2 Two views of the topology of the hydrogen-bonded network in $[CuBrL_2]Br \cdot CH_3OH$ (1), formed by the hydrogen bonds listed in Table S4. Top: Aggregation of the Cu (green) and Br (yellow) nodes into a zig-zag sheet along the (001) crystal plane, formed from Cu(1)...Cu(1ⁱⁱⁱ) and the three Cu...Br contacts. Bottom: the linking of these sheets (white) into three dimensions by the Cu(1)...Cu(1ⁱ) connection (pink).

Fig. S3 Two views of the topology of the extended hydrogen-bonded network in $[CuL_2(OH_2)]SO_4 H_2O \cdot CH_3OH$ (2), formed by the hydrogen bonds listed in Table S5. Left: the bilayer of 6³ sheets formed from the Cu(1)...S(27), Cu(1)...S(27ⁱⁱ), Cu(1)...S(27ⁱⁱⁱ) and Cu(1)...S(27^{viii}) hydrogen bond pathways, running along the (001) crystal plane. The Cu nodes are in green, and S nodes in pink. Right: the complete network, viewed approximately perpendicular to the (010) plane with the [100] crystal vector horizontal. The layers of 6³ rings are in white, while the cross-linking pathways are Cu(1)...S(27) (red), Cu(1)...S(27ⁱ)</sup> (green) and S(27)...S(27^{iv}) (pink).

Fig. S4 Diagram showing the relationship between the network topology for $[CuL_2(OH_2)]SO_4 H_2O \cdot CH_3OH$ (2) in Fig. S3, and the boron nitride structure. The BN network is in black, while the additional $S(27)...S(27^{iv})$ edge (pink in Fig. S3) found in 2 is shown in pink.