### **Electronic Supplementary Information (ESI)**

for

## Relaxometric and solution NMR structural studies on ditopic lanthanide(III) complexes of a phosphinate analogue of DOTA with a fast rate of water exchange

Jakub Rudovský,<sup>a</sup> Mauro Botta, <sup>\*b</sup> Petr Hermann, <sup>\*a</sup> Avtandil Koridze<sup>c</sup> and Silvio Aime<sup>d</sup>

<sup>a</sup> Department of Inorganic Chemistry, Charles Universisty, Hlavova 2030, 128 40 Prague 2, Czech Republic. E-mail: petrh@natur.cuni.cz. Tel: (+420) 22195-1263. Fax: (+420) 22195-1253

<sup>b</sup> Department of Environmental and Life Sciences, University of Eastern Piedmont "A. Avogadro", Via Bellini 25/G, I-15100 Alessandria, Italy. E-mail: mauro.botta@mfn.unipmn.it. Tel: (+39) 0131-360253. Fax: (+39) 0131-360250

<sup>c</sup> Department of Chemistry, I. Javakhishvili Tbilisi State University, 3 Chavchavadze ave., 380028 Tbilisi, Georgia

<sup>d</sup> Department of Chemistry I. F. M., University of Turin, Via P. Giuria 7, I-10125 Torino, Italy.



**Figure S1**. Relaxometric titration of a 5 mM solution of  $CS(DO3A-P^{NBn})_2$  with GdCl<sub>3</sub>. The change in the slope of the curve corresponds to the ratio Gd/L 2:1. The solid line is result of a least-square linear fitting and determines the relaxivity of the [Gd<sub>2</sub>(CS(DO3AP^{NBn})<sub>2</sub>)(H<sub>2</sub>O)<sub>2</sub>]<sup>2-</sup> complex at 400 MHz and 298 K: <sup>298</sup> $r_1 = 5.67 \text{ s}^{-1} \text{ mM}^{-1}$ .



**Figure S2**. The measurement of the dysprosium-induced <sup>17</sup>O chemical shifts during the titration of a solution of  $CS(DO3A-P^{NBn})_2$  with DyCl<sub>3</sub>. The slope of the line is -38.5 ppm  $M^{-1}$ . It corresponds to the presence of a single water molecule in the first coordination sphere of the dysprosium(III) complex.



**Figure S3**. <sup>1</sup>H NMR spectrum of the  $[Eu_2(CS(DO3A-PNBn)_2)(H_2O)_2]^{2-}$  complex at 400 MHz and 273 K.



**Figure S4** The relaxivity of the  $[GdY(CS(DO3A-P^{NBn})_2)(H_2O)_2]^{2-}$  complex as a function of pH at 20 MHz and 25 °C.



**Figure S5**. <sup>13</sup>C NMR spectrum of  $CS(DO3A-P^{NBn})_2$  (a) and of  $[GdY(CS(DO3A-P^{NBn})_2)(H_2O)_2]^{2-}$  (b) at 9.4 T and 298 K. The resonances were assigned in the order of increasing chemical shift. The asterisks label the signals of *t*-BuOH present in the deuterium oxide solution as an internal standard.

**Table S1**. The complete set of the possible isomers of  $[Ln_2(CS(DO3A-P^{NBn})_2)(H_2O)_2]^{2-}$  complexes.

| Schematic structure of isomer | Abbreviation                                    | N° of <sup>31</sup> P NMR | Relative                       |
|-------------------------------|-------------------------------------------------|---------------------------|--------------------------------|
|                               |                                                 | signals                   | intensity of the<br>NMR signal |
|                               | M <sub>R</sub> -M <sub>R</sub>                  | 1                         | 2                              |
| OLn O                         | M <sub>S</sub> -M <sub>S</sub>                  | 1                         | 2                              |
| DLn LnO                       | $M_{\rm S}$ - $M_{\rm R}$ =                     | 2                         | 2                              |
|                               | $= M_{\rm R} - M_{\rm S}$                       | 2                         |                                |
|                               | m <sub>R</sub> -m <sub>R</sub>                  | 1                         | 2                              |
| OLn O                         | т <sub>S</sub> -т <sub>S</sub>                  | 1                         | 2                              |
| DLn LnO                       | <i>m</i> <sub>S</sub> - <i>m</i> <sub>R</sub> = | 2                         | 2                              |
|                               | $= m_{\rm R} - m_{\rm S}$                       | 2                         | 2                              |
|                               | M <sub>R</sub> -m <sub>R</sub>                  | 2                         | 1                              |

| CLn O   | M <sub>S</sub> -m <sub>S</sub> | 2                 | 1 |
|---------|--------------------------------|-------------------|---|
|         | M <sub>R</sub> -m <sub>S</sub> | 2                 | 1 |
| CLn LnO | M <sub>S</sub> -m <sub>R</sub> | 2                 | 1 |
| Total   | 10 species                     | 16 NMR<br>signals |   |

**Table S2**. <sup>13</sup>C NMR  $T_1$  relaxation times of the [GdY(CS(DO3A-P<sup>NBn</sup>)<sub>2</sub>)(H<sub>2</sub>O)<sub>2</sub>]<sup>2-</sup> complex measured at 9.4 T and 298 K. The resonances were assigned in the order of increasing chemical shift – see the spectra in Fig. S4.

| Assignment                                     | Peak | $T_1 / ms$     |  |
|------------------------------------------------|------|----------------|--|
| $-P-\underline{C}H_2-C_6H_4$                   | 1    | $9.7 \pm 0.5$  |  |
| ring – <u>C</u> H <sub>2</sub> –               | 2    | $15 \pm 1$     |  |
|                                                | 3    | $14.6 \pm 0.2$ |  |
|                                                | 4    | $14.9 \pm 0.7$ |  |
| $-N-\underline{C}H_2-P-$ and                   | 5    | $16.2 \pm 0.5$ |  |
| -N- <u>C</u> H <sub>2</sub> -CO <sub>2</sub> H | 5    | $10.3 \pm 0.3$ |  |
| phenyl CH and C                                | 6    | $4.1 \pm 0.3$  |  |
|                                                | 7    | $6.2 \pm 0.4$  |  |
|                                                | 8    | $6.1 \pm 0.3$  |  |
|                                                | 9    | $4.1 \pm 0.4$  |  |
| C=O and C=S                                    | 10   | $14.6 \pm 0.5$ |  |

# Equations used for the multiparametrical fitting of <sup>1</sup>H and <sup>17</sup>O relaxometric data in Scientist form. The description of a given equation is provided directly in the script:

#### // Fit of NMRD and 170 T2 data

IndVars: T,B DepVars: R1h,R2o Params:delta,Hm,tm0,tr0,Hr,tv0,Hv,acc,ro,rh,n,a,trsf,rsf,Hmss,tm0ss,n1,gl

#### // Parameters and variables used

// T - temperature at K // B - used field at MHz // R2o - 17O transversal relaxivity at ms-1 (unreduced) // R1h- 1H longitudinal relaxivity at ms-1/mmol (reduced) // delta - squared ZFS matrix // tm0 - water residence time at 298°K // Hm - water exchange activation energy // tr0 - rotation correlation time at 298°K // Hr -activation energy of rotation // tv0 - electronic correlation time of ZFS splitting // Hv - activation energy of electronic relaxation // acc - hyperfine Gd-O coupling constant A/hbar // ro - Gd-O distance // rh - Gh-H distance // n number of water molecule coordinated to Gd // s - multiplicity of Gd  $\,$  - fixed to 3.5  $\,$ // a - shortest distance form outer sphere to gadolinium - for OS contribution // D - diffusion coefficient at 298°K // n1 - number of water molecules at second sphere // rsf - Gd-SS distance // trsf - rotation correlation time of the second sphere // Hmss - water exchange activation energy for second sphere contribution // tm0ss - second-sphere water residence time at 298°K // gl - squared deviation tensor of Lande g-factor

#### // Physical constants implicitly used

// univ - universal gass constant R = 8.31441 //  $\mu$ B - Bohr magneton  $\mu$ B = 9.274e-24 //  $\mu$ 0 - vacuum magnetic susceptibility  $\mu$ 0 = 4 $\pi$ e-7 // h - Planck constant h = 6.62617e-34 // hbar = 1.0546e-34 // NA - Avogadro constant NA = 6.023e23 // k - Boltzman constant k = 1.38066e-23 //  $\gamma$ o - gyromagnetic ratio of 17O  $\gamma$ o = -3.626e7 //  $\gamma$ h - gyromagnetic ratio of 1H  $\gamma$ h = 2.675e8 // gs - elektrononic gyromagnetic ratio gs = 1.75977e11 // Notes

II magnetic field is in Larmor frequencies - omegas (Wo a WS) are calculated as 2\*pi\*B\*ratio of gyros

// BMS equations : // Definitions of constants s=3.5 univ=8.31441 sz=31.5 // Definition of omegas wh=6.28e6\*B ws=658.21\*wh

wo=-0.1355514\*wh // Eyring equations tm=((tm0^(-1)\*T/298.15)\*exp((Hm/univ)\*(0.003354-(1/T))))^(-1) tmss=((tm0ss^(-1)\*T/298.15)\*exp((Hmss/univ)\*(0.003354-(1/T))))^(-1) tr=((tr0^(-1))\*exp((Hr/univ)\*(0.003354-(1/T))))^(-1) tv=((tv0^(-1))\*exp((Hv/univ)\*(0.003354-(1/T))))^(-1) // Electronic relaxation-ZFS T1eZFS=((1/25)\*delta\*tv\*(4\*s^2+4\*s-3)\*((1/(1+ws^2\*tv^2))+(4/(1+4\*ws^2\*tv^2))))^(-1) T2eZFS=(delta\*tv\*((5.26/(1+(0.372\*ws^2\*tv^2)))+(7.18/(1+(1.24\*ws^2\*tv^2)))))^(-1) // Spin rotation term - optional TeSR=(dg/(9\*tr))^(-1) // Powell's terms of Gd-Gd interaction - optional (need to set new parameter RGd) // R1ed=((CONST\*(2\*dipe1+8\*dipe2))/rgd^6) // R2ed=((CONST\*(dipe0+5\*dipe1+2\*dipe2))/rgd^6) // CONST=3.3597e+23 // dipe0=tr // dipe1=tr/(1+ws^2\*tr^2) // dipe2=tr/(1+4\*ws^2\*tr^2) // Total electronic relaxation T1e=(T1eZFS^(-1)+TeSR^(-1)+R1ed)^(-1) T2e=(T2eZFS^(-1)+TeSR^(-1)+R2ed)^(-1) // Total correlation times tc1=(T1e^(-1)+tr^(-1)+tm^(-1))^(-1) tc2=(T2e^(-1)+tr^(-1)+tm^(-1))^(-1) te1=(T1e^(-1)+tm^(-1))^(-1) te2=(T2e^(-1)+tm^(-1))^(-1) // R2 scalar - contact contribution for 170 //cont=(1/3)\*s\*(s+1)\*acc^2\*(te1+(te2/(1+ws^2\*te2^2))) cont=(1/3)\*s\*(s+1)\*acc^2\*(te1) // R2 dipolar – pseudo-contact contribution for 170 dip1=((1/15)\*4.535671e-45\*s\*(s+1))/(ro^6) dip2=4\*tc1 dip3=(13\*tc2)/(1+ws^2\*tc2^2)  $dip4=(3*tc1)/(1+wo^2*tc1^2)$ dip=dip1\*(dip2+dip3+dip4) // R2 dipolar Curie contribution for 170 dip7=(1/5)\*(wo^2\*7.397e-107\*7.94^4)/(9\*1.9063324e-46\*T^2\*ro^6)  $dip8=4*tr+(3*tr)/(1+wo^{2}tr^{2})$ cur=dip7\*dip8 // Total dipolar contribution to R2 of 170 diptot=dip+cur // Total R2 relaxation - optional //T2m=(cont+diptot)^(-1) T2m=(cont)^(-1) // Radial frequency difference of bound and free water at rad/s dwm=2\*s\*(s+1)\*9.274e-24/(3\*1.38066e-23\*T)\*acc\*(B\*1E6\*6.28/2.675E8) // Overall reduced T2 relaxation of 170 num=(T2m^(-2))+(T2m\*tm)^(-1)+dwm^2 denom=(tm^(-1)+T2m^(-1))^2+dwm^2 scam=num/denom pm=n\*1e-3/55.55 R2o=pm\*scam/tm // R1 dipolar - pseudo-contact contribution for 1H COST2=5.16963e-43/rh^6 R1DIP=(COST2\*((7\*TC2/(1+WS^2\*TC2^2))+(3\*TC1/(1+Wh^2\*TC1^2)))) // Total inner sphere milimolar contribution to 1H relaxivity T1M=(R1DIP)^(-1) R1IN=(N\*1E-3/55.55)/(T1M+TM) // Calculus for diffusion coefficient according to J.C.Hindman B1=3.118150E-04

B2=5.062560E+03 B3=1.547920E+02 B4=1.629310E+03 D=(1E-4)/((B1\*EXP(B2/T))+(B3\*EXP(B4/T))) // Freed model of outer sphere contribution to 1H relaxivity TAU=A^2/D // Spectral density function J(i) for proton spins AI=TAU/T1e CI=[0,1]\*wh\*tau z2l=ai+ci JI=RE((1+0.25\*(z2I^0.5))/(1+z2I^0.5+(4/9)\*z2I+(1/9)\*(z2I^1.5))) // Spectral density function J(s) for gadolinium electron states AS=TAU/T2e CS=[0,1]\*ws\*tau z2S=aS+cS JS=RE((1+0.25\*(z2S^0.5))/(1+z2S^0.5+(4/9)\*z2S+(1/9)\*(z2S^1.5))) // Calculation of outer sphere contribution to 1H relaxivity according to Freed's model COST3=3.68e-20\*S\*(S+1) R1OS=(COST3/(A\*D))\*((3\*JI)+(7\*JS)) // Second sphere contribution to 1H R1 relaxivity; only dipolar R1 contribution TC1SF=(T1E^(-1)+TRSF^(-1))^(-1) TC2SF=(T2E^(-1)+TRSF^(-1))^(-1) COST2SF=(5.16963e-43/RSF^6) R1DIPSF=(COST2SF\*((7\*TC2SF/(1+WS^2\*TC2SF^2))+(3\*TC1SF/(1+Wh^2\*TC1SF^2)))) T1MSF=(R1DIPSF)^(-1) R1SF=(N1\*1e-3/55.55)/(T1MSF+tmss) // Overall R1 proton relaxivity R1h=R1IN+R1OS+R1SF // Estimation of parameter - combination of Merbach's DOTA parameters and estimation // for the second sphere