Gadolinium(III) Complexes of Mono- and Diethyl Esters of Monophosphonic Acid Analogue of DOTA as Potential MRI Contrast Agents: Solution Structures and Relaxometric Studies

Petra Lebdušková,^{a,b} Petr Hermann,^a Lothar Helm,*^b Éva Tóth,^{b,c} Jan Kotek,^{a,d} Koen Binnemans,^d Jakub Rudovský,^a Ivan Lukeš,*^a and André E. Merbach^b

^a Department of Inorganic Chemistry, Charles University, Hlavova 2030, 12840 Prague, Czech Republic. Fax: +420 2 2195 1253; Tel: +420 2 2195 1259; E-mail: lukes@natur.cuni.cz

^b Laboratoire de chimie inorganique et bioinorganique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. Fax: +41 21 693 98 75; Tel: +41 21 693 98 76; E-mail: lothar.helm@epfl.ch

^c Centre de biophysique moléculaire, CNRS, rue Charles-Sadron, 45071 Orléans, Cedex 2, France. ^d Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

Appendix. Equations used in the analysis of ¹⁷O NMR and ¹H NMRD data. **Table S1:** Proton relaxivities $(r_1 / \text{mM}^{-1} \text{ s}^{-1})$ of $[\text{Gd}(\text{do3ap}^{\text{OEt}})(\text{H}_2\text{O})]^-$, $c(\text{Gd}^{\text{III}}) = 4.7 \text{ mM}$, pH = 6.30, at variable temperature.

Table S2: Proton relaxivities $(r_1 / \text{mM}^{-1} \text{ s}^{-1})$ of [Gd(do3ap^{OEt2})(H₂O)], c(Gd^{III}) = 4.1 mM, pH = 6.25, at variable temperature.

Table S3: Variable temperature reduced transversal and longitudinal ¹⁷O relaxation rates of $[Gd(do3ap^{OEt})(H_2O)]^-$, $c(Gd^{III}) = 79$ mM, pH = 5.98, $P_m = 1.56 \cdot 10^{-3}$ at 9.4 T. Reference was acidified H₂O, pH = 6.

Table S4: Variable temperature reduced transversal and longitudinal ¹⁷O relaxation rates of $[Gd(do3ap^{OEt2})(H_2O)]$, $c(Gd^{III}) = 36$ mM, pH = 6.2, $P_m = 6.64 \cdot 10^{-4}$ at 9.4 T. Reference was acidified H₂O, pH = 3.71.

Figure S1. Variable temperature reduced ¹⁷O chemical shifts of [Gd(do3ap^{OEt2})(H₂O)], c(Gd^{III}) = 36 mM, pH=6.2, P_m =6.64·10⁻⁴ at 9.4 T. Reference was acidified H₂O, pH = 3.71.

Figure S2. Variable temperature reduced ¹⁷O chemical shifts of $[Gd(do3ap^{OEt})(H_2O)]^-$, $c(Gd^{III}) = 79$ mM, pH=5.98, P_m =1.56·10⁻³ at 9.4 T. Reference was acidified H₂O, pH = 6.

Table S5. Fitted parameters of $[Gd(do3ap^{OEt2})(H_2O)]$ and $[Gd(do3ap^{OEt})(H_2O)]^-$. The underlined parameters were fixed during the fitting.

Figure S3: Dependence of the chemical shift of ³¹P NMR signals of $[Eu(do3ap^{OEt})H_2O]^-$ on temperature; pH 6.5

Figure S4: Dependence of fraction of TSAP isomer of $[Eu(do3ap^{OEt})(H_2O)]^-$ on pH; measured at 3 °C by ³¹P NMR

Figure S5: Dependence of fraction of TSAP isomer of $[Eu(do3ap^{OEt})(H_2O)]^-$ on pH; measured at 3 °C by ¹H NMR

Figure S6: Dependence of fraction of TSAP isomer of $[Eu(do3ap^{OEt2})(H_2O)]$ on pH; measured at 3 °C by ³¹P NMR.

Figure S7: Dependence of fraction of TSAP isomer of $[Eu(do3ap^{OEt2})(H_2O)]$ on pH; measured at 3 °C by ¹H NMR.

Figure S8: Temperature dependence of UV-VIS spectra of [Eu(do3ap^{OEt2})(H₂O)].

Figure S9: Temperature dependence of UV-VIS spectra of $[Eu(do3ap^{OEt})(H_2O)]^-$.

Figure S10: The contact contributions to the ¹⁷O LIS measurements of $[Ln(do3ap^{OEt})(H_2O)]^-$, measured at 9.4 T, 25 °C and pH 7.

Figure S11: ¹H NMRD profile of $[Gd(do3ap)(H_2O)]^{2-}$ complex recorded at 37 °C (\blacklozenge) with fitted line (full line) and calculated contributions from outer-sphere (dashed line) and second-sphere (dotted line) water.

Appendix.

¹⁷O NMR relaxation:

From the measured ¹⁷O NMR relaxation rates and angular frequencies of the paramagnetic solutions, $1/T_1$, $1/T_2$ and ω , and of the acidified water reference, $1/T_{1A}$, $1/T_{2A}$ and ω_A , one can calculate the reduced relaxation rates, $1/T_{1r}$, $1/T_{2r}$ (Eq. [1] and [2]), where $1/T_{1m}$, $1/T_{2m}$ are the relaxation rates of the bound water and $\Delta \omega_m$ is the chemical shift difference between bound and bulk water, τ_m is the mean residence time or the inverse of the water exchange rate k_{ex} and P_m is the mole fraction of the bound water.^{1,2}

$$\frac{1}{T_{1r}} = \frac{1}{P_m} \left[\frac{1}{T_1} - \frac{1}{T_{1A}} \right] = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1OS}}$$
^[1]

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2} + \frac{1}{T_{2OS}}$$
^[2]

The terms l/T_{1OS} and l/T_{2OS} describe relaxation contributions from water molecules not directly bound to the paramagnetic centre. In previous studies it has been shown that ¹⁷O outer-sphere relaxation terms due to water molecules freely diffusing on the surface of Gd-polyaminocarboxylate complexes are negligible. For complexes with phosphate groups relaxation terms due to 2nd-sphere water molecules can however be important for longitudinal relaxation l/T_{lr} and have therefore to be included.

$$\frac{1}{T_{1r}} = \frac{1}{T_{1r}^{1st}} + \frac{1}{T_{1r}^{2nd}} = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1r}^{2nd}}$$
[3]

$$\frac{1}{T_{2r}} = \frac{1}{T_{2r}^{1st}} = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2}$$
[4]

First-sphere contribution to ¹⁷O relaxation:

The ¹⁷O longitudinal relaxation rates in Gd(III) solutions are the sum of the contributions of the dipole-dipole and quadrupolar (in the approximation developed by Halle for non-extreme narrowing conditions) mechanisms as expressed by Eq. [6]-[7], where γ_s is the electron and γ_1 is the nuclear gyromagnetic ratio ($\gamma_s = 1.76 \times 1011 \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$, $\gamma_I = -3.626 \times 10^7 \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$), r_{GdO} is the effective distance between the electron charge and the ¹⁷O nucleus, *I* is the nuclear spin (5/2 for ¹⁷O), χ is the quadrupolar coupling constant and η is an asymmetry parameter:

$$\frac{1}{T_{1m}} = \frac{1}{T_{1dd}} + \frac{1}{T_{1q}}$$
[5]

$$\frac{1}{T_{1dd}} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_I^2 \gamma_S^2}{r_{GdO}^6} S(S+1) \left[3J(\omega_I; \tau_{d1}) + 7J(\omega_S; \tau_{d2}) \right]; \quad J(\omega, \tau) = \frac{\tau}{1 + (\omega\tau)^2}$$
^[6]

$$\frac{1}{\tau_{d1}} = \frac{1}{\tau_{m}} + \frac{1}{T_{1e}} + \frac{1}{\tau_{RO}}$$

$$\frac{1}{T_{1q}} = \frac{3\pi^{2}}{10} \frac{2I+3}{I^{2}(2I-1)} \chi^{2} \left(1 + \frac{\eta^{2}}{3}\right) \left[0.2J_{1}(\omega_{I};\tau_{RO}) + 0.8J_{2}(\omega_{I};\tau_{RO})\right]; \quad J_{n}(\omega;\tau) = \frac{\tau}{1 + (n\omega\tau)^{2}}$$
[7]

In the transverse relaxation the scalar contribution, $1/T_{2sc}$, is dominating, Eq. [8]. $1/\tau_{s1}$ is the sum of the exchange rate constant and the electron spin relaxation rate.

$$\frac{1}{T_{2m}} \approx \frac{1}{T_{2SC}} = \frac{S(S+1)}{3} \left(\frac{A}{\hbar}\right)^2 \tau_{S1}$$
[8]

$$\frac{1}{\tau_{s1}} = \frac{1}{\tau_m} + \frac{1}{T_{le}}$$
[9]

Second-sphere contribution to ¹⁷O relaxation:

$$\frac{1}{T_1^{2nd}} \approx \frac{q^{2nd}}{q^{1st}} \frac{1}{T_{1m}^{2nd}} = \frac{q^{2nd}}{q^{1st}} \left(\frac{1}{T_{1dd}^{2nd}} + \frac{1}{T_{1q}^{2nd}} \right)$$
[10]

$$\frac{1}{T_{1dd}^{2nd}} = C_{dd}^{2nd,0} \left(\frac{3\tau_{d1}^{2nd,0}}{1 + (\omega_1 \tau_{d1}^{2nd,0})^2} + \frac{7\tau_{d2}^{2nd,0}}{1 + (\omega_5 \tau_{d2}^{2nd,0})^2} \right)$$
[11]

$$C_{dd}^{2nd,O} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_{17_O}^2 \gamma_S^2}{\left(r_{GdO}^{2nd}\right)^6} S(S+1)$$

$$\frac{1}{T_{lq}^{2nd}} = \frac{3\pi^2}{10} \frac{2I+3}{I^2 (2I-1)} \chi^2 \left(1+\eta^2/3\right) \left(\frac{0.2\tau^{2nd,0}}{1+\left(\omega_1\tau^{2nd,0}\right)^2} + \frac{0.8\tau^{2nd,0}}{1+\left(2\omega_1\tau^{2nd,0}\right)^2}\right)$$
[12]

$$\frac{1}{\tau^{0,2nd}} = \frac{1}{\tau_{g}} + \frac{1}{\tau_{l}^{0}} \cong \frac{1}{\tau_{l}^{0}}$$
[13]

$$\frac{1}{\tau_{di}^{2nd,O}} = k_{ex}^{2nd} + \frac{1}{\tau^{O,2nd}} + \frac{1}{T_{ie}}$$
[14]

¹H NMRD:

The measured longitudinal proton relaxation rate, R_1^{obs} is the sum of a paramagnetic and a diamagnetic contribution as expressed in Eq. [15], where r_1 is the proton relaxivity:

$$R_{1}^{obs} = R_{1}^{d} + R_{1}^{p} = R_{1}^{d} + r_{1} \left[Gd^{3+} \right]$$
[15]

The relaxivity is here given by the sum of inner-sphere, second-sphere and outer-sphere contributions: $r_1 = r_{1is} + r_{1,2nd} + r_{1os}$ [16]

Inner-sphere ¹H relaxation:

The inner-sphere term is given in Eq. [17], where q^{lst} is the number of inner-sphere water molecules.³

$$r_{1is} = \frac{1}{1000} \times \frac{q^{1st}}{55.55} \times \frac{1}{T_{1m}^H + \tau_m}$$
[17]

The longitudinal relaxation rate of inner-sphere protons, $1/T_{Im}^{H}$ is expressed by Eq. [18], where r_{GdH} is the effective distance between the electron charge and the ¹H nucleus, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the Gd(III) electron spin.

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{6dH}^{6}} S(S+1) \left[3J(\omega_{I};\tau_{d1}) + 7J(\omega_{S};\tau_{d2}) \right]$$
[18]

$$J(\omega;\tau_{di}) = \left(\frac{S^{2}\tau_{dig}}{1+\omega^{2}\tau_{dig}^{2}} + \frac{(1-S^{2})\tau_{di}}{1+\omega^{2}\tau_{di}^{2}}\right); \quad i = 1,2$$
[19]

$$\frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau_g} + \frac{1}{T_{ie}}; \quad \frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau^H} + \frac{1}{T_{ie}}; \quad i = 1, 2$$
[20]

$$\frac{1}{\tau^{\rm H}} = \frac{1}{\tau_{\rm g}} + \frac{1}{\tau_{\rm l}^{\rm H}}$$
^[21]

The spectral density functions are given by Eq. [19].

Second-sphere ¹H relaxation:

$$r_{l}^{2nd} = \frac{1}{1000} \times \frac{q^{2nd}}{55.55} \times \frac{1}{T_{ldd}^{2nd,H} + \tau_{m}^{2nd}} \cong \frac{1}{1000} \times \frac{q^{2nd}}{55.55} \times \frac{1}{T_{ldd}^{2nd,H}}$$
[22]

$$\frac{1}{T_{ldd}^{2nd,H}} = C_{dd}^{2nd,O} \left(\frac{3\tau_{d1}^{2nd,H}}{1 + (\omega,\tau_{u}^{2nd,H})^2} + \frac{7\tau_{d2}^{2nd,H}}{1 + (\omega,\tau_{u}^{2nd,H})^2} \right)$$
[23]

$$C_{dd}^{2nd,H} = \frac{2}{15} \left(\frac{\mu_0}{4\pi} \right)^2 \frac{h^2 \gamma_{1H}^2 \gamma_S^2}{(r^{2nd})^6} S(S+1)$$
[24]

$$13(4\pi)^{(1_{GdO})}$$

$$1 = 1e^{2nd} + \frac{1}{2} + \frac{1}{2}$$
[25]

$$\overline{\tau_{di}^{2nd,H}} = K_{ex}^{ax} + \overline{\tau}^{H} + \overline{T}_{ie}$$
[26]

$$\frac{1}{\tau^{\rm H}} = \frac{1}{\tau_{\rm g}} + \frac{1}{\tau_{\rm l}^{\rm H}}$$

Outer-sphere ¹H relaxation:

The outer-sphere contribution can be described by Eq. [27] where N_A is the Avogadro constant, and J_{os} is its associated spectral density function.^{4,5}

$$r_{1os} = \frac{32N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_s^2 \gamma_l^2}{a_{GdH} D_{GdH}} S(S+1) \left[3J_{os}(\omega_l; T_{1e}) + 7J_{os}(\omega_s; T_{2e})\right]$$
[27]

$$J_{os}(\omega, T_{je}) = \operatorname{Re}\left[\frac{1 + \frac{1}{4}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2}}{1 + \left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2} + \frac{4}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right) + \frac{1}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{3/2}}\right]; \quad j = 1, 2$$

$$\tau_{GdH} = \frac{a_{GdH}^{2}}{D_{GdH}}$$
[29]

 a_{GdH} is the distance of closes approach and D_{GdH} is the diffusion coefficient for the diffusion of a water proton relative to the Gd(III) complex.

Electron spin relaxation:

The longitudinal and transverse electronic relaxation rates, $1/T_{le}$ and $1/T_{2e}$ are described by Solomon-Bloembergen-Morgan theory modified by Powell (Eqs. [30]-[31]), where τ_V is the correlation time for the modulation of the zero-field-splitting interaction.

$$\left(\frac{1}{T_{1e}}\right)^{2rs} = \frac{1}{25}\Delta^2 \tau_v \left\{ 4S(S+1) - 3 \right\} \left(\frac{1}{1 + \omega_s^2 \tau_v^2} + \frac{4}{1 + 4\omega_s^2 \tau_v^2}\right)$$
[30]

$$\left(\frac{1}{T_{2e}}\right)^{ZFS} = \Delta^2 \tau_v \left(\frac{5.26}{1 + 0.372\omega_s^2 \tau_v^2} + \frac{7.18}{1 + 1.24\omega_s \tau_v}\right)$$
[31]

Temperature dependences of water exchange rates and correlation times:

The exchange rates are supposed to follow the Eyring equation. In Eq. [32] ΔS^{t} and ΔH^{t} are the entropy and enthalpy of activation for the water exchange process, and k_{ex}^{298} is the exchange rate

at 298.15 K. In Eq. [33] $\Delta H^{\ddagger 2nd}$ is the enthalpy of activation for the second sphere water exchange process and $k_{ex}^{2nd,298}$ is the corresponding exchange rate at 298 K.

$$k_{ex} = \frac{1}{\tau_m} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[32]

$$k_{ex}^{2nd} = \frac{k_{ex}^{2nd,298}}{298.14} \exp\left\{\frac{\Delta H^{\ddagger 2nd}}{T} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[33]

All correlation times and the diffusion constant are supposed to obey an Arrhenius law:

$$\tau = \tau^{298} \exp\left\{\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
[34]

$$D_{GdH} = D_{GdH}^{298} \exp\left\{\frac{E_{GdH}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[35]

v(¹ H) /MHz	5 °C	25 °C	37 °C	50 °C
0.010	17.0	10.9	8.53	6.39
0.014	17.0	10.9	8.53	6.41
0.021	17.0	10.9	8.50	6.41
0.030	17.0	10.9	8.51	6.36
0.043	17.1	10.8	8.48	6.38
0.062	16.9	10.8	8.50	6.40
0.089	17.0	10.9	8.51	6.40
0.13	16.9	10.8	8.48	6.36
0.18	16.9	10.8	8.49	6.40
0.26	16.9	10.9	8.40	6.39
0.38	16.9	10.8	8.43	6.36
0.55	16.7	10.7	8.36	6.31
0.78	16.5	10.6	8.34	6.24
1.1	16.0	10.4	8.16	6.17
1.6	15.4	10.1	7.93	5.99
2.3	14.3	9.52	7.56	5.79
3.4	12.6	8.58	6.92	5.44
4.8	10.9	7.57	6.12	4.93
7.0	9.61	6.51	5.15	4.17
10	8.75	5.48	4.45	3.64
11	8.47	5.15	4.08	3.41
13	8.30	4.94	3.79	3.17
15	8.15	4.69	3.61	2.97
17	8.08	4.56	3.51	2.91
20	8.12	4.53	3.49	2.81
30	8.09	4.50	3.32	2.69
40	7.88	4.41	3.19	2.55
60	8.11	4.33	3.09	2.44
100	7.58	4.16	2.98	2.29
200	7.24	4.04	2.88	2.23
400	6.68	3.76	2.67	2.12

Table S1: Proton relaxivities $(r_1 / \text{mM}^{-1} \text{ s}^{-1})$ of $[\text{Gd}(\text{do3ap}^{\text{OEt}})(\text{H}_2\text{O})]^-$, $c(\text{Gd}^{\text{III}}) = 4.7 \text{ mM}$, pH = 6.30, at variable temperature.

Table S2: Proton relaxivities (r_1 / mM^-)	s^{-1}) of [Gd(do3ap	$^{OEt2})(H_2O)]$	$, c(Gd^{III}) =$	= 4.1 mM	, pH =	= 6.25,
at variable temperature.							

v(¹ H) /MHz	5 °C	25 °C	37 °C	50 °C
0.010	13.5	8.83	6.938	5.92
0.014	13.5	8.85	6.920	5.92
0.0208	13.5	8.80	6.945	5.93
0.030	13.5	8.80	6.925	5.89
0.043	13.5	8.79	6.917	5.93
0.062	13.5	8.80	6.900	5.91
0.089	13.5	8.78	6.932	5.92
0.13	13.5	8.81	6.890	5.94
0.18	13.4	8.80	6.891	5.90
0.26	13.4	8.79	6.904	5.87
0.38	13.4	8.80	6.885	5.84
0.55	13.4	8.76	6.866	5.84
0.78	13.3	8.71	6.818	5.79
1.1	12.9	8.60	6.746	5.72
1.6	12.4	8.34	6.612	5.64
2.3	11.8	8.04	6.358	5.41
3.4	10.8	7.47	5.976	5.14
4.8	9.76	6.79	5.502	4.75
7.0	8.52	5.97	4.787	4.21
10	8.19	5.30	4.152	3.62
11	7.83	4.94	3.893	3.33
13	7.66	4.72	3.671	3.12
15	7.53	4.56	3.529	2.97
17	7.53	4.47	3.446	2.93
20	7.49	4.43	3.435	2.87
30	7.40	4.52	3.296	2.70
40	7.38	4.35	3.198	2.55
60	7.38	4.28	3.100	2.42
100	6.91	4.28	3.142	2.31
200	6.59	3.96	2.897	2.10
400	5.89	3.87	2.799	2.01

Table S3: Variable temperature reduced transversal and longitudinal ¹⁷O relaxation rates of $[Gd(do3ap^{OEt})(H_2O)]^-$, $c(Gd^{III}) = 79$ mM, pH = 5.98, $P_m = 1.56 \cdot 10^-$ ³ at 9.4 T. Reference was acidified H₂O, pH = 6.

<i>t</i> / °C	T/K	$1000/T / K^{-1}$	$P_{\rm m}$	T_1 (Gd)/s	$T_1 (H_2O)/s$	$T_2(Gd)/s$	$T_2(\mathrm{H_2O})/\mathrm{s}$	$\ln(1/T_{1r})$	$\ln(1/T_{2r})$
8.3	281.5	3.55	1.56E-03	3.03E-03	3.58E-03	4.97E-04	3.22E-03	10.38	13.90
15.7	288.9	3.46	1.56E-03	4.01E-03	4.72E-03	5.00E-04	3.85E-03	10.08	13.93
24.9	298.1	3.36	1.56E-03	5.25E-03	6.07E-03	7.62E-04	4.73E-03	9.71	13.47
34.1	307.3	3.25	1.56E-03	6.83E-03	7.94E-03	9.10E-04	5.28E-03	9.48	13.28
43.3	316.5	3.16	1.56E-03	8.42E-03	9.94E-03	1.33E-03	6.47E-03	9.36	12.86
52.6	325.8	3.07	1.56E-03	1.03E-02	1.23E-02	2.20E-03	7.74E-03	9.26	12.25
61.8	335.0	2.99	1.56E-03	1.24E-02	1.46E-02	3.36E-03	8.50E-03	8.98	11.66
71.0	344.2	2.91	1.56E-03	1.45E-02	1.71E-02	4.98E-03	1.10E-02	8.83	11.16
80.2	353.4	2.83	1.56E-03	1.69E-02	1.89E-02	7.40E-03	1.37E-02	8.33	10.59

Table S4: Variable temperature reduced transversal and longitudinal ¹⁷O relaxation rates of [Gd(do3ap^{OEt2})(H₂O)], c(Gd^{III}) = 36 mM, pH = 6.2, $P_m = 6.64 \cdot 10^{-4}$ at 9.4 T. Reference was acidified H₂O, pH = 3.71.

<i>t</i> / °C	T/K	$1000/T / K^{-1}$	$P_{\rm m}$	T_1 (Gd)/s	$T_1 (H_2O)/s$	$T_2(Gd)/s$	$T_2(H_2O)/s$	$\ln(1/T_{1r})$	$\ln(1/T_{\rm 2r})$
4.3	277.5	3.60	6.64E-04	3.51E-03	3.80E-03	1.40E-03	3.27E-03	10.40	13.33
9.2	282.4	3.54	6.64E-04	4.19E-03	4.52E-03	1.31E-03	3.80E-03	10.19	13.53
15.0	288.2	3.47	6.64E-04	5.00E-03	5.38E-03	1.19E-03	4.47E-03	9.98	13.74
20.3	293.5	3.41	6.64E-04	5.94E-03	6.36E-03	1.17E-03	5.20E-03	9.72	13.81
25.0	298.2	3.35	6.64E-04	6.65E-03	7.21E-03	1.13E-03	5.82E-03	9.78	13.89
30.7	303.9	3.29	6.64E-04	7.66E-03	8.34E-03	1.14E-03	6.72E-03	9.68	13.91
36.0	309.2	3.23	6.64E-04	8.60E-03	9.39E-03	1.15E-03	7.42E-03	9.60	13.91
44.5	317.7	3.15	6.64E-04	1.05E-02	1.14E-02	1.43E-03	8.71E-03	9.34	13.69
56.0	329.2	3.04	6.64E-04	1.32E-02	1.42E-02	2.07E-03	1.07E-02	8.94	13.28
66.1	339.3	2.95	6.64E-04	1.56E-02	1.69E-02	3.00E-03	1.19E-02	8.85	12.84
75.6	348.8	2.87	6.64E-04	1.83E-02	1.95E-02	4.70E-03	1.34E-02	8.55	12.24
84.6	357.8	2.80	6.64E-04	2.09E-02	2.24E-02	6.45E-03	1.51E-02	8.52	11.80

Figure S1. Variable temperature reduced ¹⁷O chemical shifts of [Gd(do3ap^{OEt2})(H₂O)], c(Gd^{III}) = 36 mM, pH=6.2, P_m =6.64·10⁻⁴ at 9.4 T. Reference was acidified H₂O, pH = 3.71.

Figure S2. Variable temperature reduced ¹⁷O chemical shifts of $[Gd(do3ap^{OEt})(H_2O)]^-$, $c(Gd^{III}) = 79$ mM, pH=5.98, P_m =1.56·10⁻³ at 9.4 T. Reference was acidified H₂O, pH = 6.

Table S5. Fitted parameters of $[Gd(do3ap^{OEt2})(H_2O)]$ and $[Gd(do3ap^{OEt})(H_2O)]^-$. The underlined parameters were fixed during the fitting.

-

Parameter	[Gd(do3ap ^{OEt2})(H ₂ O)]	$[Gd(do3ap^{OEt})(H_2O)]^-$
$k_{\rm ex}^{298} [10^6 {\rm s}^{-1}]$	4.4±0.3	20±5
ΔH^{\ddagger} [kJ mol ⁻¹]	56.8±2	61.4±5
ΔS^{\ddagger} [J mol ⁻¹ K ⁻¹]	+72.7±0.5	$+100.9\pm0.6$
$A/\hbar \ [10^6 \text{ rad s}^{-1}]$	<u>-3.3</u>	<u>-3.3</u>
$\tau_{\rm R}^{298}({\rm O})$ [ps]	77±8	84±9
$E_{\rm R}$ [kJ mol ⁻¹]	<u>20</u>	<u>22</u>
$\tau_{\rm V}^{298}$ [ps]	11.4±1.5	8.7±1.2
$E_{\rm V}$ [kJ mol ⁻¹]	<u>1</u>	<u>1</u>
$\Delta^2 [10^{20} \text{ s}^{-2}]$	<u>0.55</u>	0.42 ± 0.07
$D^{298}_{GdH} [10^{-10} \text{ m}^2 \text{ s}^{-1}]$	25±3	25±2
$E_{\rm DGdH}$ [kJ mol ⁻¹]	28±1	22±1
$\delta g_{\rm L}^2 [10^{-2}]$	<u>1.7</u>	3.3±0.1
$ au_{ m R}^{298}({ m H})/ au_{ m R}^{298}({ m O})$	0.77±0.11	0.79±0.10
r _{GdO} [Å]	<u>2.5</u>	<u>2.5</u>
$r_{ m GdH}$ [Å]	<u>3.1</u>	<u>3.1</u>
r _{GdHouter} [Å]	<u>3.65</u>	<u>3.65</u>
$\chi(1+\eta^2/3)^{1/2}$ [MHz]	<u>7.58</u>	7.58
q	<u>1</u>	<u>1</u>
$q_{ m 2nd}$	<u>1</u>	<u>1</u>
$\tau_{\rm M}^{298}{}_{\rm 2nd} [{\rm ps}]$	<u>50</u>	<u>50</u>
$\Delta H^{\ddagger}_{2nd} [kJ mol^{-1}]$	<u>30</u>	<u>30</u>

r^{2nd}_{GdH} [Å]	<u>3.5</u>	<u>3.5</u>
r^{2nd}_{GdO} [Å]	<u>4.1</u>	<u>4.1</u>

Figure S3: Dependence of the chemical shift of ³¹P NMR signals of [Eu(do3ap^{OEt})H₂O]⁻ on temperature; pH 6.5

Figure S4: Dependence of fraction TSAP isomer of $[Eu(do3ap^{OEt})(H_2O)]^-$ on pH; measured at 3 °C by ³¹P NMR

Figure S5: Dependence of fraction TSAP isomer of $[Eu(do3ap^{OEt})(H_2O)]^-$ on pH; measured at 3 °C by ¹H NMR

Figure S6: Dependence of fraction TSAP isomer of $[Eu(do3ap^{OEt2})(H_2O)]$ on pH; measured at 3 °C by ³¹P NMR.

Figure S7: Dependence of fraction TSAP isomer of $[Eu(do3ap^{OEt2})(H_2O)]$ on pH; measured at 3 °C by ¹H NMR.

Figure S9: Temperature dependence of UV-Vis spectra of $[Eu(do3ap^{OEt})(H_2O)]^-$.

Figure S10: The contact contributions to the ¹⁷O LIS measurements of $[Ln(do3ap^{OEt})(H_2O)]^-$, measured at 9.4 T, 25 °C and pH 7.

Figure S11: ¹H NMRD profile of $[Gd(do3ap)(H_2O)]^{2-}$ complex recorded at 37 °C (\bullet) with fitted line (full line) and calculated contributions from outer-sphere (dotted line) and second-sphere (dashed line) water.

References for equations.

- ¹ T. J. Swift, R. E. Connick, J. Chem. Phys., 1962, **37**, 307.
 ² J. R. Zimmermann, W. E. Brittin, J. Phys. Chem., 1957, **61**, 1328.
 ³ Z. Luz, S. Meiboom, J. Chem. Phys., 1964, **40**, 2686.
 ⁴ J. H. Freed, J. Chem. Phys., 1978, **68**, 4034.
 ⁵ S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn. Reson. Spectrosc., 1991, **22**, 487.