Electronic Supplementary Information

New chiral organoantimony(III) compounds containing intramolecular N→Sb interactions – solution behaviour and solid state structures

Dana Copolovici,a Vilma R. Bojan,a Ciprian I. Raţ,a Anca Silvestru,a Hans J. Breunigb and Cristian Silvestru*a

a Facultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai, RO-400028, Cluj-Napoca, Romania. Fax: (+40) 264-590818; Tel: (+40) 264-593833; E-mail: cristi@chem.ubbcluj.ro
b Institut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334, Bremen, Germany. Fax: (+49) 421-218-62809; Tel: (+49) 421-218-63150; E-mail: hbreunig@uni-bremen.de
Coalescence of the NMe$_2$ resonances in C$_6$D$_6$

1H NMR (200 MHz, 20 °C, C$_6$D$_6$): δ 1.33 [3 H, s, N(CH$_3$)$_2$ (A)], 1.62 [3 H, s, N(CH$_3$)$_2$ (B)], AB spin system with A at 2.76 and B at 2.96 ppm (2 H, CH$_2$, 2J_{HH} 14.2 Hz), 6.82 (1 H, d, H-3, C$_6$H$_4$, 3J_{HH} 7.4 Hz), 7.02 (3 H, m, H-meta+para, C$_6$H$_3$), 7.15 (1 H, m, H-4, C$_6$H$_4$, partially overlapped by residual solvent resonance), 7.30 (1 H, dd, H-5, C$_6$H$_4$, 3J_{HH} 7.4 Hz), 7.51 (2 H, m, H-ortho, C$_6$H$_3$), 8.99 (1 H, dd, H-6, C$_6$H$_4$, 3J_{HH} 7.5, 4J_{HH} 1.1 Hz).

1H NMR (200 MHz, 65 °C, C$_6$D$_6$): δ 1.58 [6 H, s,br, N(CH$_3$)$_2$], AB spin system with A at 2.92 and B at 3.06 ppm (2 H, CH$_2$, 2J_{HH} 14.1 Hz), 6.84 (1 H, d, H-3, C$_6$H$_4$, 3J_{HH} 7.4 Hz), 7.04 (3 H, m, H-meta+para, C$_6$H$_3$), 7.14 (1 H, m, H-4, C$_6$H$_4$, partially overlapped by residual solvent resonance), 7.30 (1 H, dd, H-5, C$_6$H$_4$, 3J_{HH} 7.4 Hz), 7.51 (2 H, m, H-ortho, C$_6$H$_3$), 8.88 (1 H, d, H-6, C$_6$H$_4$, 3J_{HH} 7.4 Hz).

Coalescence of both NMe$_2$ resonances and methylene AB system, respectively, in DMSO-d$_6$

1H NMR (200 MHz, 20 °C, DMSO-d$_6$): δ 2.01 [3 H, s, N(CH$_3$)$_2$ (A)], 2.41 [3 H, s, N(CH$_3$)$_2$ (B)], AB spin system with A at 3.48 (partially overlapped by water resonance) and B at 3.83 ppm (2 H, CH$_2$, 2J_{HH} 14.6 Hz), 7.35 (4 H, m, H-3, C$_6$H$_4$, and H-meta+para, C$_6$H$_3$), 7.47 (4 H, m, H-4,5, C$_6$H$_4$, and H-ortho, C$_6$H$_3$), 8.30 (1 H, m, H-6, C$_6$H$_4$).

1H NMR (200 MHz, 50 °C, DMSO-d$_6$): δ 2.22 [6 H, s,br, N(CH$_3$)$_2$], AB spin system with A at 3.51 and B at 3.83 ppm (2 H, CH$_2$, 2J_{HH} 14.2 Hz), 7.35 (4 H, m, H-3, C$_6$H$_4$, and H-meta+para, C$_6$H$_3$), 7.47 (4 H, m, H-4,5, C$_6$H$_4$, and H-ortho, C$_6$H$_3$), 8.32 (1 H, m, H-6, C$_6$H$_4$).

1H NMR (200 MHz, 78 °C, DMSO-d$_6$): δ 2.23 [6 H, s,br, N(CH$_3$)$_2$], 3.69 (2 H, s,br, CH$_2$), 7.34 (4 H, m, H-3, C$_6$H$_4$, and H-meta+para, C$_6$H$_3$), 7.48 (4 H, m, H-4,5, C$_6$H$_4$, and H-ortho, C$_6$H$_3$), 8.34 (1 H, m, H-6, C$_6$H$_4$).
[2-(Me₂NCH₂)C₆H₄]PhSbBr (2)

- the crystal contains a 1:1 mixture of \((R_N,A_{Sb})\) and \((S_N,C_{Sb})\) isomers

Figure S1. Molecular structure of \((R_N,A_{Sb})\)-2 isomer (left) and \((S_N,C_{Sb})\)-2 isomer (right) in the crystal of 2, showing the intramolecular bromine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance \(\text{Br}(1)\ldots\text{H}(6) 2.81 \, \text{Å}\)
- \(\sum r_{\text{vdW}}(\text{Br},\text{H}) 3.15 \, \text{Å}\)

Figure S2. View of a chain polymer based on Br···Hₜₐₓ and C-Hmethylene···π (Phcentroid) contacts between \((S_N,C_{Sb})\)-2 isomers in the crystal of 2 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms \((x, −1 + y, z), (0.5 − x, −0.5 + y, 0.5 − z), (0.5 − x, 0.5 + y, 0.5 − z)\) and \((0.5 − x, 0.5 + y, 0.5 − z)\) are given by ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’, respectively].

- intermolecular distance \(\text{Br}(1)\ldots\text{H}(5a) 3.12 \, \text{Å}\)
- \(\text{C}(7)\ldots\text{H}(7A)\ldots\pi (\text{Ph}_{\text{centroid}}) 2.95 \, \text{Å}\)
Figure S3. View along b axis of a chain polymer built from (S_N,C_{Sb})-2 isomers in the crystal of 2 through Br···H$_{aryl}$ and C-H$_{methylene}$···π (Ph$_{centroid}$) contacts.

Figure S4. View of a layer with inter-chain Br···H$_{aryl}$ contacts between alternating chain polymers built from (S_N,C_{Sb})-2 and (R_N,A_{Sb})-2 isomers, respectively, in the crystal of 2.

- inter-chain distance \(Br(1)\cdots H(13) \ 3.14 \ \text{Å} \)
- $\sum r_{vdW}(Br, H) \ 3.15 \ \text{Å}$
Figure S5. ORTEP representation at 30% probability and atom numbering scheme for \((S_N,Sb)\)-3 isomer. Hydrogen atoms are omitted.

- the crystal contains a 1:1 mixture of \((R_N,A_{Sb})\) and \((S_N,C_{Sb})\) isomers

Figure S6. Molecular structure of \((R_N,A_{Sb})\)-3 isomer (left) and \((S_N,C_{Sb})\)-3 isomer (right) in the crystal of 3, showing the intramolecular iodine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance \(I(1)\cdots H(6)\) 3.04 Å \(\sum r_{vdW}(I,H)\) 3.35 Å
Figure S7. View of a chain polymer based on I···H_{methyl} contacts between alternating (S_N,C_{Sb})-3 and (R_N,A_{Sb})-3 isomers in the crystal of 3 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (x, 0.5 − y, 0.5 + z) and (x, 0.5 − y, −0.5 + z) are given by “a” and “b”, respectively].

- intermolecular distance I(1)···H(9B) 3.22 Å
 \[\sum_{\text{vdW(I,H)}} 3.35 \text{ Å} \]

Figure S8. View along c axis of a chain polymer in the crystal of 3.
Figure S9. View along \(c \) axis of parallel chain polymers in the crystal of 3.

- no further I···H contacts between parallel chains.
[2-(Me₂NCH₂)C₆H₄]Ph₂Sb (4)

- the crystal contains a 1:1 mixture of \((R_N, C_{Sb})\) and \((S_N, A_{Sb})\) isomers

![Diagram showing molecular structure of \((R_N, C_{Sb})-4\) isomer (left) and \((S_N, A_{Sb})-4\) isomer (right) in the crystal of 4.]

Figure S10. Molecular structure of \((R_N, C_{Sb})-4\) isomer (left) and \((S_N, A_{Sb})-4\) isomer (right) in the crystal of 4.

![Diagram showing view of a chain polymer based on C-H ᵃryl ---π (Ph centroid) contacts between \((R_N, C_{Sb})-4\) isomers in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown). Symmetry equivalent atoms \((x, y, -1 + z)\) and \((x, y, 1 + z)\) are given by “a” and “b”, respectively.]

Figure S11. View of a chain polymer based on C-Haryl ---π (Ph centroid) contacts between \((R_N, C_{Sb})-4\) isomers in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms \((x, y, -1 + z)\) and \((x, y, 1 + z)\) are given by “a” and “b”, respectively].

- intra-chain distance \(C(17)-H(17) ---π (Ph centroid)\) 2.80 Å
Figure S12. View of a layer of (R_N, C_{Sb})-4 isomers based on C-H$_{aryl}$···π (Ph$_{centroid}$) contacts in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown).

- inter-chain distance $C(20)$-H(20)···π (Ph$_{centroid}$) 2.93 Å

- no further contacts between parallel, alternative layers of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers, respectively.

Figure S13. View along c axis of alternative layers of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers, respectively, in the crystal of 4.
Figure S14. ORTEP representation at 30% probability and atom numbering scheme for \((S_{N3},S_{N4},C_{Sb2})-5b\) isomer. Hydrogen atoms are omitted.

- the crystal contains a 1:1 mixture of \((R_{N1},R_{N2},A_{Sb1})/ (S_{N1},S_{N2},C_{Sb1})-5a\) and \((R_{N3},R_{N4},A_{Sb2})/ (S_{N3},S_{N4},C_{Sb2})-5b\) isomers
Figure S15. Molecular structure of (a) \((R_{N1},R_{N2},A_{Sb1})-5a\) (left) and \((S_{N1},S_{N2},C_{Sb1})-5a\) (right) isomers, and (b) \((R_{N3},R_{N4},A_{Sb2})-5b\) isomer (left) and \((S_{N3},S_{N4},C_{Sb2})-5b\) isomer (right), in the crystal of 5.

Figure S16. View along axis \(a\) of a chain polymer based on C-H_methyl\(\cdots\pi\) (Ph_centroid) contacts between alternating \((R_{N1},R_{N2},A_{Sb1})-5a\) and \((S_{N3},S_{N4},C_{Sb2})-5b\) isomers in the crystal of 5 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms \((x, y, 1 + z)\) and \((x, y, -1 + z)\) are given by “a” and “b”, respectively].

- intra chain distance \(C(17)-H(17)\cdots\pi\) (Ph_centroid) 3.06 Å
- no further contacts between parallel chains.
[2-(Me₂NCH₂)C₆H₄]PhMesSb (6)

- the crystal contains a 1:1 mixture of (R₅,A₅b) and (S₅,C₅b) isomers

Figure S17. Molecular structure of (R₅,A₅b)-6 isomer (*left*) and (S₅,C₅b)-4 isomer (*right*) in the crystal of 6.

Figure S18. View of a chain polymer based on C-Haryl···π and C-Hmethyl···π (Phcentroid) contacts between (R₅,A₅b)-6 isomers in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (−1 + x, y, z) and (1 + x, y, z) are given by “a” and “b”, respectively].

- intra chain distance
 - C(21)-H(21)···π (Phcentroid) 2.90 Å
 - C(8)-H(8A)···π (Phcentroid) 2.94 Å
Figure S19. View of a layer of (R_N,A_{Sb})-6 isomers based on C-H$_{methyl}$···π (Ph$_{centroid}$) contacts in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown).

- inter-chain distance
 \[C(16)-H(16B) \cdots \pi \text{(Ph$_{centroid}$)} \] 2.97 Å

Figure S20. View of a double-layer association between layers of (R_N,A_{Sb}) and (S_N,C_{Sb}) isomers, respectively, in the crystal of 6.

- inter-layer distance
 \[C(23)-H(23) \cdots \pi \text{(Ph$_{centroid}$)} \] 2.98 Å
[2-(Me₂NCH₂)C₆H₄]MesSbBr (7)
- the crystal contains a 1:1 mixture of (Rₐ,Cₛₐₐ) and (Sₐ,Aₛₐ) isomers

![Molecular structures](image)

Figure S21. Molecular structure of (Rₐ,Cₛₐₐ)-7 isomer (left) and (Sₐ,Aₛₐ)-7 isomer (right) in the crystal of 7, showing the intramolecular bromine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).
- intramolecular distance \(\text{Br(1)} \cdots \text{H(6)} \) 2.86 Å \(\sum r_{\text{vdW}}(\text{Br,H}) \) 3.15 Å

![Dimer structure](image)

Figure S22. View of a dimer based on Br···Hₐryl contacts between (Rₐ,Cₛₐₐ) and (Sₐ,Aₛₐ)-7 isomers in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms \((1-x, 1-y, -z)\) are given by “prime”].
- intermolecular distance \(\text{Br(1)} \cdots \text{H(12a)} \) 3.07 Å
Figure S23. View of a columnar polymer of \((R_{N},C_{Sb}) / (S_{N},A_{Sb})\)-7 dimer units based on Br···Hmethyl contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms \((1-x,1-y,-z),(x,1-y,z),(1-x,-y,-z),\)

\((x,1+y,z)\) and \((1-x,2-y,-z)\) are given by ‘‘prime’’, ‘‘a’’, ‘‘prime a’’, ‘‘b’’ and ‘‘prime b’’, respectively].

- inter-dimer distance \(\text{Br}(1)\cdots\text{H}(8\text{Cb}) \text{ 3.10 Å}\)
Figure S23a. 1H NMR spectra of 7: (up) aliphatic region, and (down) aromatic region [violet - in CDCl$_3$, at r.t.; black - in DMSO-d$_6$, at 20 °C; green - in DMSO-d$_6$, at 45 °C].
Coalescence of resonances for the aromatic protons of mesityl group in DMSO-d₆

¹H NMR (300 MHz, 20 °C, DMSO-d₆): δ 1.80 (3 H, s, ortho-CH₃), 2.12 [3 H, s, N(CH₃)₂ (A)], 2.20 (3 H, s, para-CH₃), 2.36 [3 H, s, N(CH₃)₂ (B)], 2.70 (3 H, s, ortho-CH₃), AB spin system with A at 3.633 and B at 3.728 ppm (2 H, CH₂, ²JHH 14.40 Hz), 6.78 (1 H, s,br, H-3’,5’, C₆H₂), 6.93 (1 H, s,br, H-3’,5’, C₆H₂), 7.30 (1 H, m, H-3, C₆H₄), 7.41 (2 H, ddd, H-4,5, C₆H₄), 8.40 (1 H, m, H-6, C₆H₄).

¹H NMR (300 MHz, 45 °C, DMSO-d₆): δ 1.87 (3 H, s,br, ortho-CH₃), 2.12 [3 H, s, N(CH₃)₂ (A)], 2.21 (3 H, s, para-CH₃), 2.38 [3 H, s, N(CH₃)₂ (B)], 2.68 (3 H, s,br, ortho-CH₃), AB spin system with A at 3.651 and B at 3.734 ppm (2 H, CH₂, ²JHH 14.20 Hz), 6.86 (2 H, s,br, H-3’,5’, C₆H₂), 7.30 (1 H, m, H-3, C₆H₄), 7.41 (2 H, ddd, H-4,5, C₆H₄), 8.42 (1 H, m, H-6, C₆H₄).
[2-(Me₂NCH₂)C₆H₄]MesSbI (8)

- the crystal contains a 1:1 mixture of (R_N,C$_{Sb}$) and (S_N,A$_{Sb}$) isomers

Figure S24. Molecular structure of (R_N,C$_{Sb}$)-8 isomer (left) and (S_N,A$_{Sb}$)-8 isomer (right) in the crystal of 8, showing the intramolecular iodine-hydrogen and C-H$_{methyl}$···π (Ph$_{centroid}$) contacts (only hydrogen atoms involved in intramolecular interactions are shown).

- intramolecular distance
 - I(1)···H(6) 3.06 Å
 - I(1)···H(16B) 3.23 Å
 - C(16)-H(16C)···π (Ph$_{centroid}$) 3.02 Å

Figure S25. View of a chain polymer association based on I···H$_{methyl}$ contacts between (S_N,A$_{Sb}$)-8 isomers in the crystal of 8 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (−1 + x, y, z) and (1 + x, y, z) are given by ‘a’ and ‘b’, respectively].

- intermolecular distance
 - I(1)···H(9Cb) 3.17 Å
Figure S26. View along axis c of a layer of (S_N,A_Sb)-8 isomers based on I···H$_{methyl}$, I···H$_{aryl}$ and C-H$_{aryl}$···π (Ph$_{centroid}$) contacts in the crystal of 8 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(2-x, 0.5+y, 0.5-z)$ and $(2-x, -0.5+y, 0.5-z)$ are given by ‘prime’ and ‘double prime’, respectively].

- intermolecular distance
 I(1)···H(14') 3.31 Å
 I(1)···H(4'') 3.34 Å
 C(5)-H(5)···π (Ph$_{centroid}$) 3.00 Å

Figure S27. View along axis a of the 3D structure built from alternating layers of (R_N,C_{Sb})-8 and (S_N,A_{Sb})-8 isomers based on C-H$_{methyl}$···π (Ph$_{centroid}$) contacts in the crystal of 8 (only hydrogen atoms involved in intermolecular contacts are shown).

- intermolecular distance
 C(16)-H(16A)···π (Ph$_{centroid}$) 2.99 Å
[2-(Me2NCH2)C6H4]Mes2Sb (9)

1H NMR (200 MHz, 20 °C, C6D6): δ 1.79 [6 H, s, N(CH3)2], 2.13 (6 H, s, ortho-CH3), 2.40 (12 H, s, para-CH3), 3.35 (2 H, s, CH2), 6.77 (4 H, s, H-3’,5’, C6H2), 6.91 (1 H, m, H-5, C6H4), 7.03 (2 H, m, H-3,4, C6H4), 7.91 (1 H, d, H-6, C6H4, 3JHH 7.2 Hz).

13C-NMR (50 MHz, 20 °C, C6D6): 20.98 (s, para-CH3), 26.16 (s, ortho-CH3), 44.31 [s, N(CH3)2], 66.21 (s, CH2), 128.17 (s, C-5), 128.31 (s, C-4), 128.84 (s, C-3), 129.19 (s, C-3’,5’), 137.46 (s, C-1’), 138.20 (s, C-6), 139.43 (s, C-4’), 140.13 (s, C-1), 144.99 (s, C-2’,6’), 145.26 (s C-2).