Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is (c) The Royal Society of Chemistry 2010

(Supplementary Information)

Photo catalytic activities of Pt/ZIF-8 loaded highly ordered TiO$_2$ nanotubes

Tayirjan T. Isimjan, Hossein Kazemian, Sohrab Rohani* and Ajay K. Ray

Department of Chemical and Biochemical Engineering, The University of Western Ontario. Fax: (519) 850-3498; Tel: +1 519-661-2111 ext. 84116

* E-mail: rohani@eng.uwo.ca

ZIF-8 synthesis reaction:
Fig. S1 Synthesis of ZIF-8 Nanocrystals Capped with Neutral 2-Methylimidazole

\[
\text{Zn(NO}_3\text{)}_2 + 2 \text{Hmim} \rightarrow \text{[Zn(mim)\textsubscript{2-x}(Hmim)\textsubscript{x}]} + (2-x) \text{H}^+ + 2 \text{NO}_3^-
\]

Schematic illustration of catalytic setup:

Fig. S2: Cross section of the set-up used for photocatalytic tests: (1) Solar simulator; (2) Black box; (3) Reactor; (4) Sample holder; (5) Stirrer bar; (6) Sample

SEM micrographs of the TiO\textsubscript{2} NT samples:
Fig. S3 SEM micrographs of TiO$_2$ NT samples: (a) Cross-section of unloaded TiO$_2$ NTs, (b) top view of unloaded TiO$_2$ NTs at larger magnitude, (c) pore size and wall thickness of unloaded TiO$_2$ NTs, (d) Pt/ZIF-8 loaded TiO$_2$ NTs, (e) Pt loaded TiO$_2$ NTs

Fig. S4 EDX results of Pt loaded TiO$_2$ NTs
Band gap calculation:

1) Wavelength (λ) was converted into Energy (E) according to equation (1)

$$E = \frac{h \nu}{\lambda} \quad (1)$$

Where, h is Planck's constant (6.626×10^{-34} J.s), C is speed of light (3.0×10^8 m.s$^{-1}$) and λ is wavelength of light.

2) F(R) vs λ was measured by UV-vis

3) Band gap measurement curve was made by $\sqrt{F(R) \times E}$ vs. E

ZIF-8 loading calculation:

The chemical composition of ZIF-8 is Zn (mIm)$_2$ (i.e. Zn(2-methylimidazole)$_2$) with molecular mass of 227.6 g.mol$^{-1}$. Each molecular unit contains one Zn (65.4 g.mol$^{-1}$). According to EDX results, the Zn concentration was 5.2%, therefore the ZIF-8 loading can be calculated as following:

$$\text{ZIF-8\%} = \frac{227.6}{65.4} \times 5.2\% = 18.1\%$$

1) References