Supporting Information

Photoresponsive side-chain liquid crystalline polymers with an easily cross-linkable azobenzene mesogen

Xinjuan Li, Ruibin Wen, Ying Zhang, Lirong Zhu, Baolong Zhang, Huiqi Zhang*

Key Laboratory of Functional Polymer Materials (Nankai University), Ministry of Education, Department of Chemistry, Nankai University, Tianjin 300071, P. R. China
Tel: +86-2223507193; E-mail: zhanghuiqi@nankai.edu.cn

Experimental

Synthesis of the intermediates

4-[(4-Hydroxy)phenylazo]benzoic acid. 4-[(4-Hydroxy)phenylazo]benzoic acid was prepared according to the literature method (yield: 90%).1 1H NMR (DMSO-d\textsubscript{6}): \(\delta \) (ppm) = 13.14 (s, -COOH), 10.44 (s, Ar-OH), 8.17-8.07 (d, 2H, Ar-H), 7.94-7.82 (m, 4H, Ar-H), 7.02-6.93 (d, 2H, Ar-H).

4-[(4-(\(\omega \)-Hydroxyethyloxy))phenylazo]benzoic acid (HAzoA-2). HAzoA-2 was synthesized following the literature procedure (yield: 56 %).2 1H NMR (DMSO-d\textsubscript{6}): \(\delta \) (ppm) = 13.18 (s, -COOH), 8.20-8.08 (t, 2H, Ar-H), 8.00-7.88 (m, 4H, Ar-H), 7.23-7.12 (d, 2H, Ar-H), 4.92 (s, 1H, -OH), 4.18-4.09 (t, 2H, Ar-OCH\textsubscript{2}-), 3.82-3.71 (t, 2H, -CH\textsubscript{2}OH).

4-[(4-(\(\omega \)-Hydroxyhexyloxy))phenylazo]benzoic acid (HAzoA-6). Prepared as for HAzoA-2 (yield: 57 %). 1H NMR (DMSO-d\textsubscript{6}): \(\delta \) (ppm) = 13.18 (s, -COOH), 8.18-8.09 (d, 2H, Ar-H), 7.98-7.88 (m, 4H, Ar-H), 7.20-7.10 (d, 2H, Ar-H), 4.34 (s, 1H, -OH), 4.14-4.05 (t,
2H, Ar-\(\text{OCH}_2\))-), 3.40 (the peak is partially overlapped with the peak of water in DMSO-d6, 2H, \(-\text{CH}_2\text{OH}\)), 1.82-1.70 (m, 2H, Ar-\(\text{OCH}_2\text{CH}_2\)-), 1.50-1.29 (m, 6H, -(CH\(_2\)_3CH\(_2\)OH)).

4-[(4-(\(\omega\)-Hydroxydecyloxy))phenylazo]benzoic acid (HAzoA-10). Prepared as for HAzoA-2 (yield: 55%). \(^1\)H NMR (DMSO-d6): \(\delta\) (ppm) = 13.14 (s, -COOH), 8.16-8.07 (d, 2H, Ar-H), 7.97-7.86 (m, 4H, Ar-H), 7.20-7.11 (d, 2H, Ar-H), 4.34 (s, 1H, -OH), 4.15-4.05 (t, 2H, -Ar-\(\text{OCH}_2\)-), \(-\text{CH}_2\text{OH}\)), 1.81-1.69 (m, 2H, -Ar-\(\text{OCH}_2\text{CH}_2\)-), 1.49-1.20 (m, 14H, - (CH\(_2\)_7CH\(_2\)OH)).

4-[(4-Methacryloyloxy)phenylazo]benzoic acid (MAzoA-0). Prepared as for HAzoA-2 (yield: 55%). \(^1\)H NMR (DMSO-d6): \(\delta\) (ppm) = 13.24 (s, 1H, -COOH), 8.21-8.12 (d, 2H, Ar-H), 8.07-7.93 (dd, 4H, Ar-H), 7.51-7.42 (d, 2H, Ar-H), 6.34 (s, 1H, CH=C), 5.96 (s, 1H, CH=C), 2.04 (s, 3H, -CH\(_3\)).

4-[(4-(\(\omega\)-Methacryloyloxyethyloxy))phenylazo]benzoic acid (MAzoA-2). MAzoA-2 was synthesized by the hydrolysis of 4-[(4-(\(\omega\)-methacryloyloxyethyloxy))phenylazo]benzoyl methacryloyl anhydride (MAzoM-2, Scheme 1 in the manuscript) following our previously reported procedure (yield: 95%). \(^1\)H NMR (DMSO-d6): \(\delta\) (ppm) = 13.18 (s, 1H, -COOH), 8.18-8.04 (d, 2H, Ar-H), 8.00-7.83 (dd, 4H, Ar-H), 7.25-7.11 (d, 2H, Ar-H), 6.05 (s, 1H, CH=C), 5.70 (s, 1H, CH=C), 4.51-4.34 (tt, 4H, -OCH\(_2\text{CH}_2\)O-), 1.89 (s, 3H, -CH\(_3\)).

4-[(4-(\(\omega\)-Methacryloyloxyhexyloxy))phenylazo]benzoic acid (MAzoA-6). Prepared as for MAzoA-2 (yield: 96%). \(^1\)H NMR (DMSO-d6): \(\delta\) (ppm) = 13.16 (s, 1H, -COOH), 8.17-8.08 (d, 2H, Ar-H), 7.98-7.86 (dd, 4H, Ar-H), 7.20-7.09 (d, 2H, Ar-H), 6.02 (s, 1H, CH=C), 5.66 (s, 1H, CH=C), 4.15-4.04 (m, 4H, -OCH\(_2\)- and -CH\(_2\)O-), 1.88 (s, 3H, -CH\(_3\)).
1.84-1.34 [m, 8H, -(CH2)4-].

4-[(4-(ω-Methacryloyloxydecyloxy))phenylazo]benzoic acid (MAzoA-10): Prepared as for MAzoA-2 (yield: 98 %). 1H NMR (DMSO-d6): δ (ppm) = 13.25 (s, 1H, -COOH), 8.18-8.09 (d, 2H, Ar-H), 7.99-7.87 (dd, 4H, Ar-H), 7.20-7.09 (d, 2H, Ar-H), 6.01 (s, 1H, CH=C), 5.66 (s, 1H, CH=C), 4.14-4.03 (m, 4H, -OCH2- and -CH2O-), 1.87 (s, 3H, -CH3), 1.81-1.21 [m, 16H, -(CH2)8-].

Characterization

1H NMR spectra were recorded on a Varian Unity plus-400 spectrometer (400 MHz). An UV-vis scanning spectrophotometer (TU1900, Beijing Purkinje General Instrument Co., Ltd) was utilized to obtain the UV-vis spectra of the monomer and polymer samples at 25 °C. The thermal back-isomerization of the solution of P10 in THF was investigated by firstly irradiating it with a 365 nm UV lamp (12 w) for 4 min until the photostationary state was reached and then the UV-vis spectrum of the polymer solution in the dark was measured in different time at 25 °C. The liquid crystalline textures of the polymer films were observed by using an Olympus BX51 polarizing optical microscope (POM) equipped with a Linksys 32 THMSE600 hot stage and a digital camera (Micropublisher 5.0 RTV). The reversible photoisomerization of the crosslinked polymer film was studied by exposing the film to alternating UV (365 nm light) and visible light irradiation (430 < λ < 550 nm).
Fig. S1 UV-vis spectra of the solutions of the azo monomers (a, $C = 5 \times 10^{-5}$ M) and polymers (b, $C = 5 \times 10^{-5}$ M of the repeat unit in the polymers) in THF at 25 °C.
Fig. S2 UV-vis spectral changes in dependence of time for the solution of P10 in THF ($C = 0.0282$ mg/mL) in the dark at 25°C after being irradiated for 4 min with 365 nm light.

Fig. S3 POM images upon cooling: uncrosslinked P10 film at 155°C (annealed for 30 min) (a) and at 170°C (b); crosslinked P10 film at 200°C (annealed for 55 min) (c).
Fig. S4 UV and visible light-induced photoisomerization cycles of the crosslinked polymer P10 film shown in Figure 8. In each cycle (from the 2nd cycle), the film was irradiated firstly with UV light for 3 min and then with visible light for 7 min, respectively.

References

